Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Ubiquitin levels: the next target against gynecological cancers?
Diane L. Haakonsen, Michael Rape
Diane L. Haakonsen, Michael Rape
Published November 13, 2017
Citation Information: J Clin Invest. 2017;127(12):4228-4230. https://doi.org/10.1172/JCI98262.
View: Text | PDF
Commentary

Ubiquitin levels: the next target against gynecological cancers?

  • Text
  • PDF
Abstract

Ubiquitylation is a tightly regulated process that is essential for appropriate cell survival and function, and the ubiquitin pathway has shown promise as a therapeutic target for several forms of cancer. In this issue of the JCI, Kedves and colleagues report the identification of a subset of gynecological cancers with repressed expression of the polyubiquitin gene UBB, which renders these cancer cells sensitive to further decreases in ubiquitin production by inhibition of the polyubiquitin gene UBC. Moreover, inducible depletion of UBC in mice harboring tumors with low UBB levels dramatically decreased tumor burden and prolonged survival. Together, the results of this study indicate that there is a synthetic lethal relationship between UBB and UBC that has potential to be exploited as a therapeutic strategy to fight these devastating cancers.

Authors

Diane L. Haakonsen, Michael Rape

×

Full Text PDF | Download (557.80 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts