Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury
Jonathan Corne, … , Aaron B. Waxman, Jack A. Elias
Jonathan Corne, … , Aaron B. Waxman, Jack A. Elias
Published September 15, 2000
Citation Information: J Clin Invest. 2000;106(6):783-791. https://doi.org/10.1172/JCI9674.
View: Text | PDF
Article

IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury

  • Text
  • PDF
Abstract

Hyperoxia is an important cause of acute lung injury. To determine whether IL-13 is protective in hyperoxia, we compared the survival in 100% O2 of transgenic mice that overexpress IL-13 in the lung and of nontransgenic littermate controls. IL-13 enhanced survival in 100% O2. One hundred percent of nontransgenic mice died in 4–5 days, whereas 100% of IL-13–overexpressing mice lived for more than 7 days, and many lived 10–14 days. IL-13 also stimulated VEGF accumulation in mice breathing room air, and it interacted with 100% 2 to increase VEGF accumulation further. The 164–amino acid isoform was the major VEGF moiety in bronchoalveolar lavage from transgenic mice in room air, whereas the 120– and 188–amino acid isoforms accumulated in these mice during hyperoxia. In addition, antibody neutralization of VEGF decreased the survival of IL-13–overexpressing mice in 100% 2. These studies demonstrate that IL-13 has protective effects in hyperoxic acute lung injury. They also demonstrate that IL-13, alone and in combination with 100% 2, stimulates pulmonary VEGF accumulation, that this stimulation is isoform-specific, and that the protective effects of IL-13 are mediated, in part, by VEGF.

Authors

Jonathan Corne, Geoffrey Chupp, Chun Guen Lee, Robert J. Homer, Zhou Zhu, Qingsheng Chen, Bing Ma, Yuefen Du, Francoise Roux, John McArdle, Aaron B. Waxman, Jack A. Elias

×

Figure 7

Options: View larger image (or click on image) Download as PowerPoint
Effect of neutralization of VEGF on the survival of CC10–IL-13 mice in 1...
Effect of neutralization of VEGF on the survival of CC10–IL-13 mice in 100% oxygen. To determine whether VEGF contributed to the enhanced survival of CC10–IL-13 mice, transgenic mice were exposed to 100% oxygen after the intraperitoneal administration of either nonspecific IgG (triangles, dashed line) or an anti-VEGF antibody (squares, solid line) as described in Methods (n = 8 for each group). There was a significant reduction in the survival of the group given anti-VEGF antibody compared with the mice given the control antibody (P < 0.0001).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts