Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Patience pays in spinal repair
Steven A. Goldman
Steven A. Goldman
Published August 21, 2017
Citation Information: J Clin Invest. 2017;127(9):3284-3286. https://doi.org/10.1172/JCI96650.
View: Text | PDF
Commentary

Patience pays in spinal repair

  • Text
  • PDF
Abstract

Transplantation of human neural stem cells has long been proposed as a potential strategy for treating CNS injury and disease; however, application of this approach has had limited therapeutic benefit. Yet compared with rodents and other experimental mammals, humans have a relatively long time window for development of the brain and spinal cord. In this issue of the JCI, Lu and colleagues asked whether the results of neural stem cell transplantation might be improved by accommodating the protracted development of human neural cells. They used a rodent model of spinal cord injury, in which human neural progenitor cells were transplanted at the site of damage. While there was no observable benefit at early time points after transplantation, both anatomic and functional improvements in the injured animals emerged over the course of a year. In particular, the human progenitor cell population differentiated, matured, and integrated into the rodent spinal cords over a time frame that aligned with the normal development of these cells in humans. This study demonstrates that neural stem cells may offer significant therapeutic benefit after CNS injury; however, this process may take time and demands patience on the part of investigators, patients, and clinicians alike.

Authors

Steven A. Goldman

×

Figure 1

The gradual differentiation of human neural stem cells into neurons and glia following transplantation into the injured spinal cord.

Options: View larger image (or click on image) Download as PowerPoint
The gradual differentiation of human neural stem cells into neurons and ...
Human neural stem cells (NSCs) grafted into spinal cord lesions follow a developmental time course that is similar to that observed during human development. Stem cell–derived neurons first appear at the site of transplantation by 2 months after transplantation, while astrocytes appear by 6 months. By that point, connections between host neurons and donor-derived neurons are first seen as well. By a year after transplantation, NSC-derived myelinogenic oligodendrocytes are observed, while functional improvement is evident in the transplanted animals relative to their nonengrafted controls.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts