Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Host cyclooxygenase-2 modulates carcinoma growth
Christopher S. Williams, … , Sudhansu K. Dey, Raymond N. DuBois
Christopher S. Williams, … , Sudhansu K. Dey, Raymond N. DuBois
Published June 1, 2000
Citation Information: J Clin Invest. 2000;105(11):1589-1594. https://doi.org/10.1172/JCI9621.
View: Text | PDF
Article

Host cyclooxygenase-2 modulates carcinoma growth

  • Text
  • PDF
Abstract

Cyclooxygenase-2 (COX-2; Ptgs2) acts as a tumor promoter in rodent models for colorectal cancer, but its precise role in carcinogenesis remains unclear. We evaluated the contribution of host-derived COX-1 and COX-2 in tumor growth using both genetic and pharmacological approaches. Lewis lung carcinoma (LLC) cells grow rapidly as solid tumors when implanted in C57BL/6 mice. We found that tumor growth was markedly attenuated in COX-2–/–, but not COX-1–/– or wild-type mice. Treatment of wild-type C57BL/6 mice bearing LLC tumors with a selective COX-2 inhibitor also reduced tumor growth. A decrease in vascular density was observed in tumors grown in COX-2–/– mice when compared with those in wild-type mice. Because COX-2 is expressed in stromal fibroblasts of human and rodent colorectal carcinomas, we evaluated COX-2–/– mouse fibroblasts and found a 94% reduction in their ability to produce the proangiogenic factor, VEGF. Additionally, treatment of wild-type mouse fibroblasts with a selective COX-2 inhibitor reduced VEGF production by 92%.

Authors

Christopher S. Williams, Masahiko Tsujii, Jeff Reese, Sudhansu K. Dey, Raymond N. DuBois

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
VEGF production in fibroblasts is regulated by COX-2. Production of VEGF...
VEGF production in fibroblasts is regulated by COX-2. Production of VEGF by wild-type, COX-1–/–, and COX-2–/– fibroblasts was determined. Each treatment condition is listed below its respective bar graph. WT denotes wild-type mouse fibroblasts. We observed a 93% reduction in VEGF production in COX-2–/– fibroblasts when compared with wild-type fibroblasts. Additionally, treatment of wild-type fibroblasts with a selective COX-2 inhibitor (10 μM SC-58125) led to a ∼90% reduction in VEGF levels.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts