Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
BAG3 plays a central role in proteostasis in the heart
Wataru Mizushima, Junichi Sadoshima
Wataru Mizushima, Junichi Sadoshima
Published July 24, 2017
Citation Information: J Clin Invest. 2017;127(8):2900-2903. https://doi.org/10.1172/JCI95839.
View: Text | PDF
Commentary

BAG3 plays a central role in proteostasis in the heart

  • Text
  • PDF
Abstract

Proteinopathies are characterized by the accumulation of misfolded proteins, which ultimately interfere with normal cell function. While neurological diseases, such as Huntington disease and Alzheimer disease, are well-characterized proteinopathies, cardiac diseases have recently been associated with alterations in proteostasis. In this issue of the JCI, Fang and colleagues demonstrate that mice with cardiac-specific deficiency of the co-chaperone protein BCL2-associated athanogene 3 (BAG3) develop dilated cardiomyopathy that is associated with a destabilization of small HSPs as the result of a disrupted interaction between BAG3 and HSP70. Together, the results of this study suggest that strategies to upregulate BAG3 during cardiac dysfunction may be beneficial.

Authors

Wataru Mizushima, Junichi Sadoshima

×

Full Text PDF | Download (244.52 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts