Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Altered expression of fatty acid–metabolizing enzymes in aromatase-deficient mice
Yoshihisa Nemoto, … , Teruhiko Okada, Yutaka Shizuta
Yoshihisa Nemoto, … , Teruhiko Okada, Yutaka Shizuta
Published June 15, 2000
Citation Information: J Clin Invest. 2000;105(12):1819-1825. https://doi.org/10.1172/JCI9575.
View: Text | PDF
Article

Altered expression of fatty acid–metabolizing enzymes in aromatase-deficient mice

  • Text
  • PDF
Abstract

Hepatic steatosis is a frequent complication in nonobese patients with breast cancer treated with tamoxifen, a potent antagonist of estrogen. In addition, hepatic steatosis became evident spontaneously in the aromatase-deficient (ArKO) mouse, which lacks intrinsic estrogen production. These clinical and laboratory observations suggest that estrogen helps to maintain constitutive lipid metabolism. To clarify this hypothesis, we characterized the expression and activity in ArKO mouse liver of enzymes involved in peroxisomal and mitochondrial fatty acid β-oxidation. Northern analysis showed reduced expression of mRNAs for very long fatty acyl-CoA synthetase, peroxisomal fatty acyl-CoA oxidase, and medium-chain acyl-CoA dehydrogenase, enzymes required in fatty acid β-oxidation. In vitro assays of fatty acid β-oxidation activity using very long (C24:0), long (C16:0), or medium (C12:0) chain fatty acids as the substrates confirmed that the corresponding activities are also diminished. Impaired gene expression and enzyme activities of fatty acid β-oxidation were restored to the wild-type levels, and hepatic steatosis was substantially diminished in animals treated with 17β-estradiol. Wild-type and ArKO mice showed no difference in the binding activities of the hepatic nuclear extracts to a peroxisome proliferator response element. These findings demonstrate the pivotal role of estrogen in supporting constitutive hepatic expression of genes involved in lipid β-oxidation and in maintaining hepatic lipid homeostasis.

Authors

Yoshihisa Nemoto, Katsumi Toda, Masafumi Ono, Kiyomi Fujikawa-Adachi, Toshiji Saibara, Saburo Onishi, Hideaki Enzan, Teruhiko Okada, Yutaka Shizuta

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Impaired hepatic fatty acid β-oxidation activity in ArKO mice. Peroxisom...
Impaired hepatic fatty acid β-oxidation activity in ArKO mice. Peroxisomal β-oxidation capacity was assessed using tetracosanoic acid (C24:0) as the substrate, and mitochondrial β-oxidation capacity, using palmitic acid (C16:0) and lauric acid (C12:0). The bars represent the mean ± SD from at least six samples in each group. AStatistically significant difference (P < 0.001) compared with the value obtained with the wild-type group (Ar+/+) and the ArKO mice supplemented with 17β-estradiol group (Ar–/– + E2).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts