Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Genetic basis of human congenital anomalies of the kidney and urinary tract
Simone Sanna-Cherchi, … , Gian Marco Ghiggeri, Ali G. Gharavi
Simone Sanna-Cherchi, … , Gian Marco Ghiggeri, Ali G. Gharavi
Published January 2, 2018
Citation Information: J Clin Invest. 2018;128(1):4-15. https://doi.org/10.1172/JCI95300.
View: Text | PDF
Review

Genetic basis of human congenital anomalies of the kidney and urinary tract

  • Text
  • PDF
Abstract

The clinical spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) encompasses a common birth defect in humans that has significant impact on long-term patient survival. Overall, data indicate that approximately 20% of patients may have a genetic disorder that is usually not detected based on standard clinical evaluation, implicating many different mutational mechanisms and pathogenic pathways. In particular, 10% to 15% of CAKUT patients harbor an unsuspected genomic disorder that increases risk of neurocognitive impairment and whose early recognition can impact clinical care. The emergence of high-throughput genomic technologies is expected to provide insight into the common and rare genetic determinants of diseases and offer opportunities for early diagnosis with genetic testing.

Authors

Simone Sanna-Cherchi, Rik Westland, Gian Marco Ghiggeri, Ali G. Gharavi

×

Figure 1

Proportion of patients with known genomic disorders in different human developmental phenotypes and healthy controls.

Options: View larger image (or click on image) Download as PowerPoint
Proportion of patients with known genomic disorders in different human d...
There is a striking enrichment of known genomic disorders in human developmental disease compared with controls (59–62, 64–67, 69–71). The prevalence in controls is based on 21,498 controls generated from previously published studies (70, 71). *The proportion of known genomic disorders in autism spectrum disorder is displayed as the weighted average of two independent studies (64, 65). CAKUT, congenital anomalies of the kidney and urinary tract.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts