Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP
Jocelyne E. Kaufmann, … , Walter Rosenthal, Ulrich M. Vischer
Jocelyne E. Kaufmann, … , Walter Rosenthal, Ulrich M. Vischer
Published January 1, 2000
Citation Information: J Clin Invest. 2000;106(1):107-116. https://doi.org/10.1172/JCI9516.
View: Text | PDF
Article

Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP

  • Text
  • PDF
Abstract

Vasopressin and its analogue 1-deamino-8-D-arginine vasopressin (DDAVP) are known to raise plasma von Willebrand factor (vWF) levels. DDAVP is used as a hemostatic agent for the treatment of von Willebrand’s disease. However, its cellular mechanisms of action have not been elucidated. DDAVP, a specific agonist for the vasopressin V2 receptor (V2R), exerts its antidiuretic effect via a rise in cAMP in kidney collecting ducts. We tested the hypothesis that DDAVP induces vWF secretion by binding to V2R and activating cAMP-mediated signaling in endothelial cells. vWF secretion from human umbilical vein endothelial cells (HUVECs) can be mediated by cAMP, but DDAVP is ineffective, presumably due to the absence of V2R. We report that DDAVP stimulates vWF secretion in a cAMP-dependent manner in HUVECs after transfection of the V2R. In addition, vasopressin and DDAVP induce vWF secretion in human lung microvascular endothelial cells (HMVEC-L). These cells (but not HUVECs) express endogenous V2R, as shown by RT-PCR. Vasopressin-induced vWF secretion is mimicked by DDAVP and inhibited by the selective V2R antagonist SR121463B. It is mediated by cAMP, since it is inhibited by the protein kinase A inhibitor Rp-8CPT-cAMPS. These results indicate that vasopressin induces cAMP-mediated vWF secretion by a direct effect on endothelial cells. They also demonstrate functional expression of V2R in endothelial cells, and provide a cellular mechanism for the hemostatic effects of DDAVP.

Authors

Jocelyne E. Kaufmann, Alexander Oksche, Claes B. Wollheim, Gabriele Günther, Walter Rosenthal, Ulrich M. Vischer

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
Expression of V2R in HMVEC-L and human lung. (a) RT-PCR amplification fr...
Expression of V2R in HMVEC-L and human lung. (a) RT-PCR amplification from human kidney, HMVEC-L, HUVECs, and human lung polyA+. The expected 857-bp fragment (arrow) was amplified from V2R mRNA using primers V2Rc and V2Rd. The RT-PCR reaction was performed in absence or presence of RT. First lane: HindIII/EcoRI lambda marker. The gel was stained with ethidium bromide. (b) Southern blot analysis of the RT-PCR products amplified from kidney, lung, HUVECs, and HMVEC, using a probe derived from V2R cDNA. Negative control: RT-PCR reaction performed in absence of template. The arrow indicates V2R transcript (857 bp); the band visible just above represents genomic V2R DNA. Five times less of the RT-PCR reaction was loaded on the gel for both kidney and lung compared with HUVECs and HMVEC-L. (c) RT-PCR amplification of reversed transcribed polyA+ RNA from human lung from two different donors (lanes 3 and 4) using primers STV2 and V2RBamHI. The RT-PCR reaction was performed without (lanes 3 and 4) or with prior pretreatment of the samples with RNase-free DNaseI (lane 5). The size of the fragment expected to be amplified from V2R mRNA is 1,144 bp, as verified by amplification of plasmid DNA carrying the full-length coding region of the V2R (lane 2). Lane 1: RT-PCR amplification of plasmid DNA harboring the genomic DNA of the V2R (expected size: 1,611 bp). The gel was stained with ethidium bromide.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts