Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A review of current theories and treatments for phantom limb pain
Kassondra L. Collins, … , Robert S. Waters, Jack W. Tsao
Kassondra L. Collins, … , Robert S. Waters, Jack W. Tsao
Published June 1, 2018
Citation Information: J Clin Invest. 2018;128(6):2168-2176. https://doi.org/10.1172/JCI94003.
View: Text | PDF
Review

A review of current theories and treatments for phantom limb pain

  • Text
  • PDF
Abstract

Following amputation, most amputees still report feeling the missing limb and often describe these feelings as excruciatingly painful. Phantom limb sensations (PLS) are useful while controlling a prosthesis; however, phantom limb pain (PLP) is a debilitating condition that drastically hinders quality of life. Although such experiences have been reported since the early 16th century, the etiology remains unknown. Debate continues regarding the roles of the central and peripheral nervous systems. Currently, the most posited mechanistic theories rely on neuronal network reorganization; however, greater consideration should be given to the role of the dorsal root ganglion within the peripheral nervous system. This Review provides an overview of the proposed mechanistic theories as well as an overview of various treatments for PLP.

Authors

Kassondra L. Collins, Hannah G. Russell, Patrick J. Schumacher, Katherine E. Robinson-Freeman, Ellen C. O’Conor, Kyla D. Gibney, Olivia Yambem, Robert W. Dykes, Robert S. Waters, Jack W. Tsao

×

Figure 2

Proposed peripheral contributions to PLS and PLP.

Options: View larger image (or click on image) Download as PowerPoint
Proposed peripheral contributions to PLS and PLP.
The dorsal root fibers...
The dorsal root fibers of the DRG split into lateral and medial divisions (38). The lateral division sections contain most of the unmyelinated and small myelinated axons and specifically carry pain and temperature information. The medial division sections of the dorsal root fibers (not shown) contain mostly myelinated axons that convey sensory information from the skin, muscles, and joints, such as touch, pressure, proprioception, and vibration (38). When an injury occurs to the nerves, neurons in the DRG increase their nociceptive signaling through increases in neuronal excitability and the creation of ectopic discharges (25). The resulting aberrant signaling through the spinothalamic tract may produce PLP.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts