Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Photopharmacological control of bipolar cells restores visual function in blind mice
Laura Laprell, Ivan Tochitsky, Kuldeep Kaur, Michael B. Manookin, Marco Stein, David M. Barber, Christian Schön, Stylianos Michalakis, Martin Biel, Richard H. Kramer, Martin P. Sumser, Dirk Trauner, Russell N. Van Gelder
Laura Laprell, Ivan Tochitsky, Kuldeep Kaur, Michael B. Manookin, Marco Stein, David M. Barber, Christian Schön, Stylianos Michalakis, Martin Biel, Richard H. Kramer, Martin P. Sumser, Dirk Trauner, Russell N. Van Gelder
View: Text | PDF
Research Article Ophthalmology

Photopharmacological control of bipolar cells restores visual function in blind mice

  • Text
  • PDF
Abstract

Photopharmacological control of neuronal activity using synthetic photochromic ligands, or photoswitches, is a promising approach for restoring visual function in patients suffering from degenerative retinal diseases. Azobenzene photoswitches, such as AAQ and DENAQ, have been shown to restore the responses of retinal ganglion cells to light in mouse models of retinal degeneration but do not recapitulate native retinal signal processing. Here, we describe diethylamino-azo-diethylamino (DAD), a third-generation photoswitch that is capable of restoring retinal ganglion cell light responses to blue or white light. In acute brain slices of murine layer 2/3 cortical neurons, we determined that the photoswitch quickly relaxes to its inactive form in the dark. DAD is not permanently charged, and the uncharged form enables the photoswitch to rapidly and effectively cross biological barriers and thereby access and photosensitize retinal neurons. Intravitreal injection of DAD restored retinal light responses and light-driven behavior to blind mice. Unlike DENAQ, DAD acts upstream of retinal ganglion cells, primarily conferring light sensitivity to bipolar cells. Moreover, DAD was capable of generating ON and OFF visual responses in the blind retina by utilizing intrinsic retinal circuitry, which may be advantageous for restoring visual function.

Authors

Laura Laprell, Ivan Tochitsky, Kuldeep Kaur, Michael B. Manookin, Marco Stein, David M. Barber, Christian Schön, Stylianos Michalakis, Martin Biel, Richard H. Kramer, Martin P. Sumser, Dirk Trauner, Russell N. Van Gelder

×

Figure 5

DAD induces transient currents in bipolar cells.

Options: View larger image (or click on image) Download as PowerPoint
DAD induces transient currents in bipolar cells.
(A) Fluorescence image ...
(A) Fluorescence image of a bipolar cell filled with Lucifer Yellow after whole-cell patch-clamp configuration. Scale bar: 25 μm. (B) Fluorescence image of an amacrine cell filled with Lucifer Yellow after whole-cell patch-clamp configuration. Scale bar: 50 μm (C) Voltage-clamp recording of a bipolar cell before application of DAD. Peristimulus time histogram (PTSH) of 5 sweeps. The asterisk marks a light artefact induced by the LED. The bar above the trace marks the light stimulation with 460-nm light. (D) Voltage-clamp recording after the incubation with DAD. PSTH of 5 consecutive sweeps. (E) Raw data voltage-clamp recordings depending on the wavelength. (F) Analysis of wavelength screens in E. Red indicates wavelength screens before the application of DAD. Black indicates wavelength screenings after the application of DAD (n = 7 cells controls, n = 6 cells after DAD application). (G–I) IV relationships of DAD-mediated currents in the absence of any blockers. (G) Raw data trace for voltages from –100 to +40 mV. (H) Enlargement of box in Ga. (I) Analysis of IV relationships. Empty circles indicate transient peak current. Black circles indicate late Kv-channel component (n = 8). (J–L) Same experiments as in G–I, respectively, but in presence of TTX in the extracellular solution and TEA, Cs+, and EGTA in the intracellular solution (n = 8).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts