Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Na+-dependent transporters mediate HCO3– salvage across the luminal membrane of the main pancreatic duct
Min Goo Lee, Wooin Ahn, Joo Young Choi, Xiang Luo, Jeong Taeg Seo, Patrick J. Schultheis, Gary E. Shull, Kyung Hwan Kim, Shmuel Muallem
Min Goo Lee, Wooin Ahn, Joo Young Choi, Xiang Luo, Jeong Taeg Seo, Patrick J. Schultheis, Gary E. Shull, Kyung Hwan Kim, Shmuel Muallem
View: Text | PDF
Article

Na+-dependent transporters mediate HCO3– salvage across the luminal membrane of the main pancreatic duct

  • Text
  • PDF
Abstract

To study the roles of Na+-dependent H+ transporters, we characterized H+ efflux mechanisms in the pancreatic duct in wild-type, NHE2–/–, and NHE3–/– mice. The pancreatic duct expresses NHE1 in the basolateral membrane, and NHE2 and NHE3 in the luminal membrane, but does not contain NHE4 or NHE5. Basolateral Na+-dependent H+ efflux in the microperfused duct was inhibited by 1.5 μM of the amiloride analogue HOE 694, consistent with expression of NHE1, whereas the luminal activity required 50 μM HOE 694 for effective inhibition, suggesting that the efflux might be mediated by NHE2. However, disruption of NHE2 had no effect on luminal transport, while disruption of the NHE3 gene reduced luminal Na+-dependent H+ efflux by ∼45%. Notably, the remaining luminal Na+-dependent H+ efflux in ducts from NHE3–/– mice was inhibited by 50 μM HOE 694. Hence, ∼55% of luminal H+ efflux (or HCO3– influx) in the pancreatic duct is mediated by a novel, HOE 694–sensitive, Na+-dependent mechanism. H+ transport by NHE3 and the novel transporter is inhibited by cAMP, albeit to different extents. We propose that multiple Na+-dependent mechanisms in the luminal membrane of the pancreatic duct absorb Na+ and HCO3– to produce a pancreatic juice that is poor in HCO3– and rich in Cl– during basal secretion. Inhibition of the transporters during stimulated secretion aids in producing the HCO3–-rich pancreatic juice.

Authors

Min Goo Lee, Wooin Ahn, Joo Young Choi, Xiang Luo, Jeong Taeg Seo, Patrick J. Schultheis, Gary E. Shull, Kyung Hwan Kim, Shmuel Muallem

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 286 37
PDF 66 6
Figure 304 1
Table 65 0
Citation downloads 78 0
Totals 799 44
Total Views 843
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts