Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cardioprotective role of S-nitrosylated hemoglobin from rbc
Claude A. Piantadosi
Claude A. Piantadosi
Published November 14, 2016
Citation Information: J Clin Invest. 2016;126(12):4402-4403. https://doi.org/10.1172/JCI91303.
View: Text | PDF
Commentary

Cardioprotective role of S-nitrosylated hemoglobin from rbc

  • Text
  • PDF
Abstract

Nitric oxide (NO) is a potent mediator of blood vessel dilation and is released by several cell sources. Red blood cells (rbc) release NO when hemoglobin that has been S-nitrosylated at Cys93 of the β-chain (βCys93) transitions from the oxygenated form to the deoxygenated form. This transition occurs in response to reduced tissue oxygenation and is an important physiologic regulator of hypoxic vasodilation. In this issue of the JCI, Zhang and colleagues demonstrate that S-nitrosylation of hemoglobin at βCys93 is important for tissue oxygenation after cardiac injury. Mice harboring mutations that prevent S-nitrosylation of βCys93 had higher rates of morbidity and mortality following cardiac injury compared with WT; however, adaptive cardiac vascularization was increased in some mutant mice and reduced cardiac injury in these animals. The results of this study reveal a previously unexplored role of S-nitrosylated hemoglobin in cardioprotection.

Authors

Claude A. Piantadosi

×

Full Text PDF

Download PDF (77.60 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts