Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Supramaximal cholecystokinin displaces Munc18c from the pancreatic acinar basal surface, redirecting apical exocytosis to the basal membrane
Herbert Y. Gaisano, … , William S. Trimble, Anne Marie F. Salapatek
Herbert Y. Gaisano, … , William S. Trimble, Anne Marie F. Salapatek
Published December 1, 2001
Citation Information: J Clin Invest. 2001;108(11):1597-1611. https://doi.org/10.1172/JCI9110.
View: Text | PDF
Article

Supramaximal cholecystokinin displaces Munc18c from the pancreatic acinar basal surface, redirecting apical exocytosis to the basal membrane

  • Text
  • PDF
Abstract

Exocytosis at the apical surface of pancreatic acinar cells occurs in the presence of physiological concentrations of cholecystokinin (CCK) but is inhibited at high concentrations. Here we show that Munc18c is localized predominantly to the basal membranes of acinar cells. Supramaximal but not submaximal CCK stimulation caused Munc18c to dissociate from the plasma membrane, and this displacement was blocked by protein kinase C (PKC) inhibitors. Conversely, whereas the CCK analog CCK-OPE alone failed to displace Munc18c from the membrane, this agent caused Munc18c displacement following minimal PKC activation. To determine the physiological significance of this displacement, we used the fluorescent dye FM1-43 to visualize individual exocytosis events in real-time from rat acinar cells in culture. We showed that supramaximal CCK inhibition of secretion resulted from impaired apical secretion and a redirection of exocytic events to restricted basal membrane sites. In contrast, CCK-OPE evoked apical exocytosis and could only induce basolateral exocytosis following activation of PKC. Infusion of supraphysiological concentrations of CCK in rats, a treatment that induced tissue changes reminiscent of mild acute pancreatitis, likewise resulted in rapid displacement of Munc18c from the basal membrane in vivo.

Authors

Herbert Y. Gaisano, Manfred P. Lutz, Juergen Leser, Laura Sheu, Grit Lynch, Lan Tang, Yoshikazu Tamori, William S. Trimble, Anne Marie F. Salapatek

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 552 19
PDF 56 17
Figure 507 4
Citation downloads 93 0
Totals 1,208 40
Total Views 1,248
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts