Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity
Wen Lin, … , Nicholas J. Hand, Daniel J. Rader
Wen Lin, … , Nicholas J. Hand, Daniel J. Rader
Published May 8, 2017
Citation Information: J Clin Invest. 2017;127(6):2407-2417. https://doi.org/10.1172/JCI90896.
View: Text | PDF
Research Article Genetics Metabolism

Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity

  • Text
  • PDF
Abstract

Genetic variants at the solute carrier family 39 member 8 (SLC39A8) gene locus are associated with the regulation of whole-blood manganese (Mn) and multiple physiological traits. SLC39A8 encodes ZIP8, a divalent metal ion transporter best known for zinc transport. Here, we hypothesized that ZIP8 regulates Mn homeostasis and Mn-dependent enzymes to influence metabolism. We generated Slc39a8-inducible global-knockout (ZIP8-iKO) and liver-specific–knockout (ZIP8-LSKO) mice and observed markedly decreased Mn levels in multiple organs and whole blood of both mouse models. By contrast, liver-specific overexpression of human ZIP8 (adeno-associated virus–ZIP8 [AAV-ZIP8]) resulted in increased tissue and whole blood Mn levels. ZIP8 expression was localized to the hepatocyte canalicular membrane, and bile Mn levels were increased in ZIP8-LSKO and decreased in AAV-ZIP8 mice. ZIP8-LSKO mice also displayed decreased liver and kidney activity of the Mn-dependent enzyme arginase. Both ZIP8-iKO and ZIP8-LSKO mice had defective protein N-glycosylation, and humans homozygous for the minor allele at the lead SLC39A8 variant showed hypogalactosylation, consistent with decreased activity of another Mn-dependent enzyme, β-1,4-galactosyltransferase. In summary, hepatic ZIP8 reclaims Mn from bile and regulates whole-body Mn homeostasis, thereby modulating the activity of Mn-dependent enzymes. This work provides a mechanistic basis for the association of SLC39A8 with whole-blood Mn, potentially linking SLC39A8 variants with other physiological traits.

Authors

Wen Lin, David R. Vann, Paschalis-Thomas Doulias, Tao Wang, Gavin Landesberg, Xueli Li, Emanuela Ricciotti, Rosario Scalia, Miao He, Nicholas J. Hand, Daniel J. Rader

×

Figure 5

Slc39a8 loss of function results in protein N-glycosylation defects.

Options: View larger image (or click on image) Download as PowerPoint

Slc39a8 loss of function results in protein N-glycosylation defects.
(A...
(A and B) MALDI-TOF analysis of the N-glycan profile for serum obtained 5 weeks after male Slc39a8fl/fl and ZIP8-iKO mice were injected with tamoxifen at 8 weeks of age. (C and D) MALDI-TOF analysis of the N-glycan profile for serum obtained from 10- to 12-week-old male Slc39a8fl/fl and ZIP8-LSKO mice. Each sample was pooled from 5 mice of the same genotype. White diamonds, sialic acid; yellow circles, galactose; blue squares, N-acetyl-glucosamine; green circles, mannose. The numbers above the peaks indicate the mass-to-charge ratios of the N-glycan species. 2853, disialo-biantennary glycans; 2448, monosialo-digalacto-biantennary glycans; 2257, monosialo-monogalacto-biantennary glycans; 1852, asialo-monogalacto-biantennary glycans; 1661, asialo-agalacto-biantennary glycans; 1416, asialo-agalacto-mono-GlcNAc-biantennary N-glycan. (E) Abundance of monosialo-monogalacto-biantennary glycans in the plasma of rs13107325 major and minor allele homozygotes. N = 11 and 12, respectively. Data are shown as the mean ± SD. Comparisons were performed using Student’s t test. *P ≤ 0.05.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts