Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Prolonged red cell storage before transfusion increases extravascular hemolysis
Francesca Rapido, … , Steven L. Spitalnik, Eldad A. Hod
Francesca Rapido, … , Steven L. Spitalnik, Eldad A. Hod
Published December 12, 2016
Citation Information: J Clin Invest. 2017;127(1):375-382. https://doi.org/10.1172/JCI90837.
View: Text | PDF
Clinical Medicine Clinical trials Hematology

Prolonged red cell storage before transfusion increases extravascular hemolysis

  • Text
  • PDF
Abstract

BACKGROUND. Some countries have limited the maximum allowable storage duration for red cells to 5 weeks before transfusion. In the US, red blood cells can be stored for up to 6 weeks, but randomized trials have not assessed the effects of this final week of storage on clinical outcomes.

METHODS. Sixty healthy adult volunteers were randomized to a single standard, autologous, leukoreduced, packed red cell transfusion after 1, 2, 3, 4, 5, or 6 weeks of storage (n = 10 per group). 51-Chromium posttransfusion red cell recovery studies were performed and laboratory parameters measured before and at defined times after transfusion.

RESULTS. Extravascular hemolysis after transfusion progressively increased with increasing storage time (P < 0.001 for linear trend in the AUC of serum indirect bilirubin and iron levels). Longer storage duration was associated with decreasing posttransfusion red cell recovery (P = 0.002), decreasing elevations in hematocrit (P = 0.02), and increasing serum ferritin (P < 0.0001). After 6 weeks of refrigerated storage, transfusion was followed by increases in AUC for serum iron (P < 0.01), transferrin saturation (P < 0.001), and nontransferrin-bound iron (P < 0.001) as compared with transfusion after 1 to 5 weeks of storage.

CONCLUSIONS. After 6 weeks of refrigerated storage, transfusion of autologous red cells to healthy human volunteers increased extravascular hemolysis, saturated serum transferrin, and produced circulating nontransferrin-bound iron. These outcomes, associated with increased risks of harm, provide evidence that the maximal allowable red cell storage duration should be reduced to the minimum sustainable by the blood supply, with 35 days as an attainable goal.

REGISTRATION. ClinicalTrials.gov NCT02087514.

FUNDING. NIH grant HL115557 and UL1 TR000040.

Authors

Francesca Rapido, Gary M. Brittenham, Sheila Bandyopadhyay, Francesca La Carpia, Camilla L’Acqua, Donald J. McMahon, Abdelhadi Rebbaa, Boguslaw S. Wojczyk, Jane Netterwald, Hangli Wang, Joseph Schwartz, Andrew Eisenberger, Mark Soffing, Randy Yeh, Chaitanya Divgi, Yelena Z. Ginzburg, Beth H. Shaz, Sujit Sheth, Richard O. Francis, Steven L. Spitalnik, Eldad A. Hod

×

Figure 5

Serum hepcidin is increased following transfusion of red cells stored for longer duration, but this does not appear to be mediated by circulating IL-6 levels.

Options: View larger image (or click on image) Download as PowerPoint
Serum hepcidin is increased following transfusion of red cells stored fo...
(A and B) Medians (I bars represent interquartile ranges) for the changes in serum hepcidin and IL-6, as labeled, are shown from pretransfusion to all posttransfusion time points. Statistical significance for ANOVA using post-hoc Tukey’s test of the AUC among the groups is shown. *P < 0.05. n = 52 total.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts