Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Alloimmune T cells in transplantation
Susan DeWolf, Megan Sykes
Susan DeWolf, Megan Sykes
Published June 19, 2017
Citation Information: J Clin Invest. 2017;127(7):2473-2481. https://doi.org/10.1172/JCI90595.
View: Text | PDF
Review Series

Alloimmune T cells in transplantation

  • Text
  • PDF
Abstract

Alloimmune T cells are central mediators of rejection and graft-versus-host disease in both solid organ and hematopoietic stem cell transplantation. Unique among immune responses in terms of its strength and diversity, the T cell alloresponse reflects extensive genetic polymorphisms between allogeneic donors and recipients, most prominently within the major histocompatibility complex (MHC), which encodes human leukocyte antigens (HLAs) in humans. The repertoire of alloreactive T cell clones is distinct for every donor-recipient pair and includes potentially thousands of unique HLA/peptide specificities. The extraordinary magnitude of the primary alloresponse and diversity of the T cell population mediating it have presented technical challenges to its study in humans. High-throughput T cell receptor sequencing approaches have opened up new possibilities for tackling many fundamental questions about this important immunologic phenomenon.

Authors

Susan DeWolf, Megan Sykes

×

Figure 1

Pathways of allorecognition.

Options: View larger image (or click on image) Download as PowerPoint
Pathways of allorecognition.
Schematic illustration of the three major p...
Schematic illustration of the three major pathways of allorecognition: direct, indirect, and semidirect. In the direct pathway, donor antigen-presenting cells (APCs) interact directly with recipient T cells. In indirect recognition, recipient APCs present processed donor allogeneic peptides to recipient T cells, similar to more typical immune responses. In the semidirect pathway, recipient APCs acquire donor HLA molecules that present peptides directly to recipient T cells.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts