Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glutamine supplementation suppresses herpes simplex virus reactivation
Kening Wang, … , Philip R. Krause, Jeffrey I. Cohen
Kening Wang, … , Philip R. Krause, Jeffrey I. Cohen
Published June 5, 2017
Citation Information: J Clin Invest. 2017;127(7):2626-2630. https://doi.org/10.1172/JCI88990.
View: Text | PDF
Brief Report Virology

Glutamine supplementation suppresses herpes simplex virus reactivation

  • Text
  • PDF
Abstract

Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1–infected mice and HSV-2–infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1–infected, glutamine-treated WT mice showed upregulation of several IFN-γ–inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1–infected IFN-γ–KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ–producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ–associated immune response and reduce the rate of reactivation of latent virus infection.

Authors

Kening Wang, Yo Hoshino, Kennichi Dowdell, Marta Bosch-Marce, Timothy G. Myers, Mayra Sarmiento, Lesley Pesnicak, Philip R. Krause, Jeffrey I. Cohen

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 3,482 4,116
PDF 221 67
Figure 453 16
Table 64 0
Supplemental data 77 15
Citation downloads 91 0
Totals 4,388 4,214
Total Views 8,602
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts