Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Driving an improved CAR for cancer immunotherapy
Xiaopei Huang, Yiping Yang
Xiaopei Huang, Yiping Yang
Published July 25, 2016
Citation Information: J Clin Invest. 2016;126(8):2795-2798. https://doi.org/10.1172/JCI88959.
View: Text | PDF
Commentary

Driving an improved CAR for cancer immunotherapy

  • Text
  • PDF
Abstract

The recent clinical success of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies represents a paradigm shift in cancer immunotherapy. Unfortunately, application of CAR T cell–mediated therapy for solid tumors has so far been disappointing, and the reasons for this poor response in solid tumors remain unknown. In this issue of the JCI, Cherkassky and colleagues report on their use of a murine model of human pleural mesothelioma to explore potential factors that limit CAR T cell efficacy. Their studies have uncovered the importance of the tumor microenvironment in the inhibition of CAR T cell functions, revealed a critical role for the programmed death-1 (PD-1) pathway in CAR T cell exhaustion within the tumor microenvironment, and demonstrated improved antitumor effects with a CAR T cell–intrinsic PD-1 blockade strategy using a dominant negative form of PD-1. Together, the results of this study lay the groundwork for further evaluation of mechanisms underlying CAR T cell immune evasion within the tumor microenvironment for the improvement of CAR T cell–mediated therapy for solid tumors.

Authors

Xiaopei Huang, Yiping Yang

×

Full Text PDF | Download (307.42 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts