Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Vision of correction for classic homocystinuria
Dwight D. Koeberl
Dwight D. Koeberl
Published May 16, 2016
Citation Information: J Clin Invest. 2016;126(6):2043-2044. https://doi.org/10.1172/JCI88251.
View: Text | PDF
Commentary

Vision of correction for classic homocystinuria

  • Text
  • PDF
Abstract

Inherited metabolic disorders are often characterized by the lack of an essential enzyme and are currently treated by dietary restriction and other strategies to replace the substrates or products of the missing enzyme. Patients with homocystinuria lack the enzyme cystathionine β-synthase (CBS), and many of these individuals do not respond to current treatment protocols. In this issue of the JCI, Bublil and colleagues demonstrate that enzyme replacement therapy (ERT) provides long-term amelioration of homocystinuria-associated phenotypes in CBS-deficient murine models. A PEGylated form of CBS provided long-term stability and, when used in conjunction with the methylation agent betaine, dramatically increased survival in mice fed a normal diet. The results of this study provide one of the first examples of ERT for a metabolic disorder and suggest that PEGylated CBS should be further explored for use in patients.

Authors

Dwight D. Koeberl

×

Full Text PDF | Download (315.44 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts