Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The extracellular matrix in myocardial injury, repair, and remodeling
Nikolaos G. Frangogiannis
Nikolaos G. Frangogiannis
Published May 1, 2017
Citation Information: J Clin Invest. 2017;127(5):1600-1612. https://doi.org/10.1172/JCI87491.
View: Text | PDF
Review

The extracellular matrix in myocardial injury, repair, and remodeling

  • Text
  • PDF
Abstract

The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration.

Authors

Nikolaos G. Frangogiannis

×

Figure 2

The role of the cell-derived provisional matrix in cardiac repair.

Options: View larger image (or click on image) Download as PowerPoint
The role of the cell-derived provisional matrix in cardiac repair.
(A) D...
(A) During the proliferative phase of cardiac repair, fibroblasts and macrophages contribute to the formation of a cell-derived provisional matrix, enriched with a wide range of matricellular macromolecules that do not serve a primary structural role, but modulate cellular phenotype and function. Specialized matrix proteins (such as ED-A domain fibronectin) and matricellular proteins, such as TSPs, tenascin-C (TNC), osteopontin (OPN), SPARC, periostin, osteoglycin, and members of the CCN family, bind to the matrix and modulate growth factor and protease activity. Specific matricellular proteins have been reported as regulating inflammation, participating in fibrogenic and angiogenic responses, modulating cardiomyocyte survival, and contributing to assembly of the structural matrix. (B) Matricellular proteins may be critical in spatial and temporal regulation of growth factor signaling. Immunohistochemical staining using a peroxidase-based technique (black) shows the strikingly selective localization of the prototypical matricellular protein TSP1 (arrows), a critical activator of TGF-β, in the border zone of a healing canine myocardial infarction (one hour ischemia followed by seven days reperfusion). Spatially and temporally restricted induction of matricellular proteins regulates growth factor signaling, preventing expansion of profibrotic responses beyond the infarcted area, despite possible diffusion of the soluble mediators in viable segments. Counterstained with eosin. Reproduced with permission from Circulation (75). Scale bar: 50 μm. GAGs, glycosaminoglycosans.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts