Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Biallelic mutations in IRF8 impair human NK cell maturation and function
Emily M. Mace, Venetia Bigley, Justin T. Gunesch, Ivan K. Chinn, Laura S. Angelo, Matthew A. Care, Sheetal Maisuria, Michael D. Keller, Sumihito Togi, Levi B. Watkin, David F. LaRosa, Shalini N. Jhangiani, Donna M. Muzny, Asbjørg Stray-Pedersen, Zeynep Coban Akdemir, Jansen B. Smith, Mayra Hernández-Sanabria, Duy T. Le, Graham D. Hogg, Tram N. Cao, Aharon G. Freud, Eva P. Szymanski, Sinisa Savic, Matthew Collin, Andrew J. Cant, Richard A. Gibbs, Steven M. Holland, Michael A. Caligiuri, Keiko Ozato, Silke Paust, Gina M. Doody, James R. Lupski, Jordan S. Orange
Emily M. Mace, Venetia Bigley, Justin T. Gunesch, Ivan K. Chinn, Laura S. Angelo, Matthew A. Care, Sheetal Maisuria, Michael D. Keller, Sumihito Togi, Levi B. Watkin, David F. LaRosa, Shalini N. Jhangiani, Donna M. Muzny, Asbjørg Stray-Pedersen, Zeynep Coban Akdemir, Jansen B. Smith, Mayra Hernández-Sanabria, Duy T. Le, Graham D. Hogg, Tram N. Cao, Aharon G. Freud, Eva P. Szymanski, Sinisa Savic, Matthew Collin, Andrew J. Cant, Richard A. Gibbs, Steven M. Holland, Michael A. Caligiuri, Keiko Ozato, Silke Paust, Gina M. Doody, James R. Lupski, Jordan S. Orange
View: Text | PDF
Research Article Immunology

Biallelic mutations in IRF8 impair human NK cell maturation and function

  • Text
  • PDF
Abstract

Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8–/–, but not Irf8+/–, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense.

Authors

Emily M. Mace, Venetia Bigley, Justin T. Gunesch, Ivan K. Chinn, Laura S. Angelo, Matthew A. Care, Sheetal Maisuria, Michael D. Keller, Sumihito Togi, Levi B. Watkin, David F. LaRosa, Shalini N. Jhangiani, Donna M. Muzny, Asbjørg Stray-Pedersen, Zeynep Coban Akdemir, Jansen B. Smith, Mayra Hernández-Sanabria, Duy T. Le, Graham D. Hogg, Tram N. Cao, Aharon G. Freud, Eva P. Szymanski, Sinisa Savic, Matthew Collin, Andrew J. Cant, Richard A. Gibbs, Steven M. Holland, Michael A. Caligiuri, Keiko Ozato, Silke Paust, Gina M. Doody, James R. Lupski, Jordan S. Orange

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (654.08 KB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts