Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma
Mariano G. Cardenas, Wenbo Yu, Wendy Beguelin, Matthew R. Teater, Huimin Geng, Rebecca L. Goldstein, Erin Oswald, Katerina Hatzi, Shao-Ning Yang, Joanna Cohen, Rita Shaknovich, Kenno Vanommeslaeghe, Huimin Cheng, Dongdong Liang, Hyo Je Cho, Joshua Abbott, Wayne Tam, Wei Du, John P. Leonard, Olivier Elemento, Leandro Cerchietti, Tomasz Cierpicki, Fengtian Xue, Alexander D. MacKerell Jr., Ari M. Melnick
Mariano G. Cardenas, Wenbo Yu, Wendy Beguelin, Matthew R. Teater, Huimin Geng, Rebecca L. Goldstein, Erin Oswald, Katerina Hatzi, Shao-Ning Yang, Joanna Cohen, Rita Shaknovich, Kenno Vanommeslaeghe, Huimin Cheng, Dongdong Liang, Hyo Je Cho, Joshua Abbott, Wayne Tam, Wei Du, John P. Leonard, Olivier Elemento, Leandro Cerchietti, Tomasz Cierpicki, Fengtian Xue, Alexander D. MacKerell Jr., Ari M. Melnick
View: Text | PDF
Research Article Oncology

Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma

  • Text
  • PDF
Abstract

Diffuse large B cell lymphomas (DLBCLs) arise from proliferating B cells transiting different stages of the germinal center reaction. In activated B cell DLBCLs (ABC-DLBCLs), a class of DLBCLs that respond poorly to current therapies, chromosomal translocations and amplification lead to constitutive expression of the B cell lymphoma 6 (BCL6) oncogene. The role of BCL6 in maintaining these lymphomas has not been investigated. Here, we designed small-molecule inhibitors that display higher affinity for BCL6 than its endogenous corepressor ligands to evaluate their therapeutic efficacy for targeting ABC-DLBCL. We used an in silico drug design functional-group mapping approach called SILCS to create a specific BCL6 inhibitor called FX1 that has 10-fold greater potency than endogenous corepressors and binds an essential region of the BCL6 lateral groove. FX1 disrupted formation of the BCL6 repression complex, reactivated BCL6 target genes, and mimicked the phenotype of mice engineered to express BCL6 with corepressor binding site mutations. Low doses of FX1 induced regression of established tumors in mice bearing DLBCL xenografts. Furthermore, FX1 suppressed ABC-DLBCL cells in vitro and in vivo, as well as primary human ABC-DLBCL specimens ex vivo. These findings indicate that ABC-DLBCL is a BCL6-dependent disease that can be targeted by rationally designed inhibitors that exceed the binding affinity of natural BCL6 ligands.

Authors

Mariano G. Cardenas, Wenbo Yu, Wendy Beguelin, Matthew R. Teater, Huimin Geng, Rebecca L. Goldstein, Erin Oswald, Katerina Hatzi, Shao-Ning Yang, Joanna Cohen, Rita Shaknovich, Kenno Vanommeslaeghe, Huimin Cheng, Dongdong Liang, Hyo Je Cho, Joshua Abbott, Wayne Tam, Wei Du, John P. Leonard, Olivier Elemento, Leandro Cerchietti, Tomasz Cierpicki, Fengtian Xue, Alexander D. MacKerell Jr., Ari M. Melnick

×

Figure 3

FX1 phenocopies the BCL6 mutant phenotype.

Options: View larger image (or click on image) Download as PowerPoint
FX1 phenocopies the BCL6 mutant phenotype.
Ten C57BL/6 mice were immuniz...
Ten C57BL/6 mice were immunized with sheep red blood cells and then treated i.p. with 80 mg/kg/d FX1 or vehicle alone daily for 8 days starting 48 hours after immunization. (A) Spleen weights from mice treated with FX1 or vehicle (2-tailed Mann-Whitney unpaired test). (B) Flow cytometry quantification of total B cells (B220+) (t test). (C) Flow cytometry quantification of GC B cells (B220+DAPI–GL7+FAS+, t test). (D) IHC of spleens from mice treated with FX1 or vehicle and stained with peanut agglutinin (PNA), Ki-67, and B220. Scale bars: 500 μm. Quantification of number and area of GCs was performed by ImageJ software. The y axis shows number of positive cells/total cell number of different sections of spleens (n = 10) (2-tailed Mann-Whitney unpaired test). Values in A–D are shown as mean ± SEM.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts