Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies
Mihalis S. Kariolis, … , Jennifer R. Cochran, Amato J. Giaccia
Mihalis S. Kariolis, … , Jennifer R. Cochran, Amato J. Giaccia
Published November 28, 2016
Citation Information: J Clin Invest. 2017;127(1):183-198. https://doi.org/10.1172/JCI85610.
View: Text | PDF
Research Article Oncology

Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies

  • Text
  • PDF
Abstract

The AXL receptor and its activating ligand, growth arrest–specific 6 (GAS6), are important drivers of metastasis and therapeutic resistance in human cancers. Given the critical roles that GAS6 and AXL play in refractory disease, this signaling axis represents an attractive target for therapeutic intervention. However, the strong picomolar binding affinity between GAS6 and AXL and the promiscuity of small molecule inhibitors represent important challenges faced by current anti-AXL therapeutics. Here, we have addressed these obstacles by engineering a second-generation, high-affinity AXL decoy receptor with an apparent affinity of 93 femtomolar to GAS6. Our decoy receptor, MYD1-72, profoundly inhibited disease progression in aggressive preclinical models of human cancers and induced cell killing in leukemia cells. When directly compared with the most advanced anti-AXL small molecules in the clinic, MYD1-72 achieved superior antitumor efficacy while displaying no toxicity. Moreover, we uncovered a relationship between AXL and the cellular response to DNA damage whereby abrogation of AXL signaling leads to accumulation of the DNA-damage markers γH2AX, 53BP1, and RAD51. MYD1-72 exploited this relationship, leading to improvements upon the therapeutic index of current standard-of-care chemotherapies in preclinical models of advanced pancreatic and ovarian cancer.

Authors

Mihalis S. Kariolis, Yu Rebecca Miao, Anh Diep, Shannon E. Nash, Monica M. Olcina, Dadi Jiang, Douglas S. Jones II, Shiven Kapur, Irimpan I. Mathews, Albert C. Koong, Erinn B. Rankin, Jennifer R. Cochran, Amato J. Giaccia

×

Figure 4

Inhibition of AXL decreases metastatic tumor burden.

Options: View larger image (or click on image) Download as PowerPoint
Inhibition of AXL decreases metastatic tumor burden.
(A) Lung metastases...
(A) Lung metastases in the 4T1 model, quantified ex vivo by bioluminescent imaging. (B) Representative bioluminescent images of whole lungs from mice in each treatment group. (C) Average animal weight in each treatment group over the course of the study. Foretinib was omitted as animals were removed throughout the study. (D) Western blot analysis of OVCAR8 cells after 4-hour treatment with BGB324, foretinib, or MYD1-72 Fc. Activation of all 3 TAM receptors as well as downstream Akt signaling was assayed. Error bars represent mean ± SEM. n = 6–12. **P < 0.01. Repeated measure ANOVA were used for measurement over time, and ANOVA with Tukey-Kramer test was used for comparing multiple treatments to each other.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts