Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs
Zhenke Wen, … , Jörg J. Goronzy, Cornelia M. Weyand
Zhenke Wen, … , Jörg J. Goronzy, Cornelia M. Weyand
Published April 18, 2016
Citation Information: J Clin Invest. 2016;126(5):1953-1967. https://doi.org/10.1172/JCI84181.
View: Text | PDF
Research Article Aging Immunology

NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs

  • Text
  • PDF
Abstract

Immune aging results in progressive loss of both protective immunity and T cell–mediated suppression, thereby conferring susceptibility to a combination of immunodeficiency and chronic inflammatory disease. Here, we determined that older individuals fail to generate immunosuppressive CD8+CCR7+ Tregs, a defect that is even more pronounced in the age-related vasculitic syndrome giant cell arteritis. In young, healthy individuals, CD8+CCR7+ Tregs are localized in T cell zones of secondary lymphoid organs, suppress activation and expansion of CD4 T cells by inhibiting the phosphorylation of membrane-proximal signaling molecules, and effectively inhibit proliferative expansion of CD4 T cells in vitro and in vivo. We identified deficiency of NADPH oxidase 2 (NOX2) as the molecular underpinning of CD8 Treg failure in the older individuals and in patients with giant cell arteritis. CD8 Tregs suppress by releasing exosomes that carry preassembled NOX2 membrane clusters and are taken up by CD4 T cells. Overexpression of NOX2 in aged CD8 Tregs promptly restored suppressive function. Together, our data support NOX2 as a critical component of the suppressive machinery of CD8 Tregs and suggest that repairing NOX2 deficiency in these cells may protect older individuals from tissue-destructive inflammatory disease, such as large-vessel vasculitis.

Authors

Zhenke Wen, Yasuhiro Shimojima, Tsuyoshi Shirai, Yinyin Li, Jihang Ju, Zhen Yang, Lu Tian, Jörg J. Goronzy, Cornelia M. Weyand

×

Figure 6

CD8 Tregs function by transferring NOX2 onto CD4 T cells.

Options: View larger image (or click on image) Download as PowerPoint
CD8 Tregs function by transferring NOX2 onto CD4 T cells.
(A–C) Resting ...
(A–C) Resting and activated CD8 Tregs, naive CD4 T cells, and freshly isolated total CD8 T cells were stained with anti-NOX2/gp91phox. Antibody binding was visualized with Alexa Fluor 488–labeled anti-rabbit antibody. (A) Representative images are shown. Scale bar: 5 μm. (B) Activation of CD8 Tregs induces clustering of membrane NOX2. A minimum of 45 cells from each of 3 independent experiments was analyzed for the frequency of CD8 Tregs with circumferential versus clustered NOX2 expression patterns. (C) Activation of CD8 Tregs increases the intensity of membrane NOX2 expression. CD8 Tregs were stained with anti-NOX2/gp91phox antibodies before and after stimulation. Staining intensity is expressed as pixel numbers. Each dot represents the data from a single cell. Unpaired 2-tailed Student’s t test was used for comparisons. (D) CD8 Tregs were stained with NOX2/gp91phox and subsequently cocultured with naive CD4 T cells (marked with CellTracker Red) for 60 minutes with (anti-CD3/CD28 beads) or without stimulation. Live-cell imaging demonstrates NOX2/gp91phox on the CD8 Tregs distributed in membrane-integrated clusters. Small clusters of NOX2/gp91phox were transferred to CD4 T cells, where they appeared as yellow dots (CellTracker Red overlaying green NOX2/gp91phox). Transfer of NOX2/gp91phox requires activation of the CD8 Tregs. Representative images are from 3 independent experiments. Scale bar: 5 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts