Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs
Zhenke Wen, Yasuhiro Shimojima, Tsuyoshi Shirai, Yinyin Li, Jihang Ju, Zhen Yang, Lu Tian, Jörg J. Goronzy, Cornelia M. Weyand
Zhenke Wen, Yasuhiro Shimojima, Tsuyoshi Shirai, Yinyin Li, Jihang Ju, Zhen Yang, Lu Tian, Jörg J. Goronzy, Cornelia M. Weyand
View: Text | PDF
Research Article Aging Immunology

NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs

  • Text
  • PDF
Abstract

Immune aging results in progressive loss of both protective immunity and T cell–mediated suppression, thereby conferring susceptibility to a combination of immunodeficiency and chronic inflammatory disease. Here, we determined that older individuals fail to generate immunosuppressive CD8+CCR7+ Tregs, a defect that is even more pronounced in the age-related vasculitic syndrome giant cell arteritis. In young, healthy individuals, CD8+CCR7+ Tregs are localized in T cell zones of secondary lymphoid organs, suppress activation and expansion of CD4 T cells by inhibiting the phosphorylation of membrane-proximal signaling molecules, and effectively inhibit proliferative expansion of CD4 T cells in vitro and in vivo. We identified deficiency of NADPH oxidase 2 (NOX2) as the molecular underpinning of CD8 Treg failure in the older individuals and in patients with giant cell arteritis. CD8 Tregs suppress by releasing exosomes that carry preassembled NOX2 membrane clusters and are taken up by CD4 T cells. Overexpression of NOX2 in aged CD8 Tregs promptly restored suppressive function. Together, our data support NOX2 as a critical component of the suppressive machinery of CD8 Tregs and suggest that repairing NOX2 deficiency in these cells may protect older individuals from tissue-destructive inflammatory disease, such as large-vessel vasculitis.

Authors

Zhenke Wen, Yasuhiro Shimojima, Tsuyoshi Shirai, Yinyin Li, Jihang Ju, Zhen Yang, Lu Tian, Jörg J. Goronzy, Cornelia M. Weyand

×

Figure 4

NOX2 insufficiency in CD8 Tregs from older individuals.

Options: View larger image (or click on image) Download as PowerPoint
NOX2 insufficiency in CD8 Tregs from older individuals.
(A) CD8+ CCR7+ T...
(A) CD8+ CCR7+ Tregs were induced ex vivo and profiled for the expression of the NADPH oxidases NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1, and DUOX2 by RT-PCR. Results from 6 donors are shown as a heat map. (B) Expression of NOX2-specific transcripts in CD8 Tregs derived from either young or older individuals was compared by RT-PCR. Results (mean ± SD) are from 4 young-old donor pairs. (C) Cellular expression of NOX2 was analyzed in gated CD8+FoxP3+CCR7+ T cells in the peripheral blood of healthy young or older donors, patients with GCA with or without treatment, middle-aged and older patients with PsA, and middle-aged patients with SVV. One representative data set is shown. (D and E) Cellular expression of NOX2 in gated CD8+CCR7+ Tregs was determined in the peripheral blood of young healthy individuals (n = 7), older healthy individuals (n = 10), patients with GCA without treatment (n = 7), patients with GCA with treatment (n = 6), middle-aged patients with PsA (n = 5), older patients with PsA (n = 5), and middle-aged patients with SVV (n = 9). Results are shown as mean ± SD of (D) frequencies and (E) MFI of cell surface expression. Unpaired 2-tailed Student’s t test was used for comparisons.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts