Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Gonadal steroid–dependent effects on bone turnover and bone mineral density in men
Joel S. Finkelstein, … , Jonathan M. Youngner, Elaine W. Yu
Joel S. Finkelstein, … , Jonathan M. Youngner, Elaine W. Yu
Published February 22, 2016
Citation Information: J Clin Invest. 2016;126(3):1114-1125. https://doi.org/10.1172/JCI84137.
View: Text | PDF
Clinical Research and Public Health Endocrinology

Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

  • Text
  • PDF
Abstract

BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain.

METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men.

RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men.

CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton.

TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114.

FUNDING. AbbVie Inc., AstraZeneca Pharmaceuticals LP, NIH.

Authors

Joel S. Finkelstein, Hang Lee, Benjamin Z. Leder, Sherri-Ann M. Burnett-Bowie, David W. Goldstein, Christopher W. Hahn, Sarah C. Hirsch, Alex Linker, Nicholas Perros, Andrew B. Servais, Alexander P. Taylor, Matthew L. Webb, Jonathan M. Youngner, Elaine W. Yu

×

Figure 1

Trial profile.

Options: View larger image (or click on image) Download as PowerPoint
Trial profile.
T, testosterone gel. G, group. G1, 0 g (placebo) testoste...
T, testosterone gel. G, group. G1, 0 g (placebo) testosterone gel daily; G2, 1.25 g of testosterone daily; G3, 2.5 g of testosterone daily; G4, 5 g of testosterone gel daily; G5, 10 g of testosterone gel daily.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts