Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction
Michio Nakaya, … , Shigekazu Nagata, Hitoshi Kurose
Michio Nakaya, … , Shigekazu Nagata, Hitoshi Kurose
Published December 5, 2016
Citation Information: J Clin Invest. 2017;127(1):383-401. https://doi.org/10.1172/JCI83822.
View: Text | PDF
Research Article Cardiology Inflammation

Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction

  • Text
  • PDF
Abstract

Myocardial infarction (MI) results in the generation of dead cells in the infarcted area. These cells are swiftly removed by phagocytes to minimize inflammation and limit expansion of the damaged area. However, the types of cells and molecules responsible for the engulfment of dead cells in the infarcted area remain largely unknown. In this study, we demonstrated that cardiac myofibroblasts, which execute tissue fibrosis by producing extracellular matrix proteins, efficiently engulf dead cells. Furthermore, we identified a population of cardiac myofibroblasts that appears in the heart after MI in humans and mice. We found that these cardiac myofibroblasts secrete milk fat globule-epidermal growth factor 8 (MFG-E8), which promotes apoptotic engulfment, and determined that serum response factor is important for MFG-E8 production in myofibroblasts. Following MFG-E8–mediated engulfment of apoptotic cells, myofibroblasts acquired antiinflammatory properties. MFG-E8 deficiency in mice led to the accumulation of unengulfed dead cells after MI, resulting in exacerbated inflammatory responses and a substantial decrease in survival. Moreover, MFG-E8 administration into infarcted hearts restored cardiac function and morphology. MFG-E8–producing myofibroblasts mainly originated from resident cardiac fibroblasts and cells that underwent endothelial-mesenchymal transition in the heart. Together, our results reveal previously unrecognized roles of myofibroblasts in regulating apoptotic engulfment and a fundamental importance of these cells in recovery from MI.

Authors

Michio Nakaya, Kenji Watari, Mitsuru Tajima, Takeo Nakaya, Shoichi Matsuda, Hiroki Ohara, Hiroaki Nishihara, Hiroshi Yamaguchi, Akiko Hashimoto, Mitsuho Nishida, Akiomi Nagasaka, Yuma Horii, Hiroki Ono, Gentaro Iribe, Ryuji Inoue, Makoto Tsuda, Kazuhide Inoue, Akira Tanaka, Masahiko Kuroda, Shigekazu Nagata, Hitoshi Kurose

×

Figure 5

MFG-E8–dependent engulfment by cardiac myofibroblasts has a protective effect on heart after MI.

Options: View larger image (or click on image) Download as PowerPoint
MFG-E8–dependent engulfment by cardiac myofibroblasts has a protective e...
(A) Cardiac myofibroblasts from WT and MFG-E8 KO mice were exposed to fluorescently labeled apoptotic cells in the absence (−) or presence of recombinant MFG-E8 (rMFG-E8). The number of engulfed apoptotic cells per myofibroblast was determined (n = 4). Scale bars: 100 μm. (B) The staining profile of cardiac myofibroblasts with PE–anti-integrin αv antibody is shown in red (n = 3). The blue histogram represents the control. (C) Integrin β5 (red) and vimentin (green) staining of infarcted area of heart sections from WT mice 3 days after MI (n = 3). A square on the first column marks the areas shown at a higher magnification. White arrows indicate vimentin-positive myofibroblasts merged with integrin β5. The percentages of integrin β5–positive fibroblasts in remote or infarct area of hearts after MI is shown in the graph. Scale bars: 50 μm (lower magnification); 20 μm (higher magnification). (D) Decreased survival rate of MFG-E8 KO mice (sham, n = 8; MI, n = 38) compared with that of WT mice (sham, n = 11; MI, n = 36) after MI. Kaplan-Meier survival analysis using a log-rank test. ###P < 0.001. (E) PicroSirius red staining of the cardiac sections of WT and MFG-E8 KO mice at day 3 after MI. The collagen volume fraction (CVF) was determined by counting collagen-depositing areas (WT, n = 4; KO, n = 5). Scale bars: 100 μm. Error bars represent the mean ± SEM. (A) *P < 0.05; ***P < 0.001, 1-way ANOVA followed by Newman-Keuls analysis. (C and E) ***P < 0.001; ##P < 0.01, unpaired 2-tailed Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts