Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes
Tsuyoshi Inoue, Chikara Abe, Sun-sang J. Sung, Stefan Moscalu, Jakub Jankowski, Liping Huang, Hong Ye, Diane L. Rosin, Patrice G. Guyenet, Mark D. Okusa
Tsuyoshi Inoue, Chikara Abe, Sun-sang J. Sung, Stefan Moscalu, Jakub Jankowski, Liping Huang, Hong Ye, Diane L. Rosin, Patrice G. Guyenet, Mark D. Okusa
View: Text | PDF
Research Article Nephrology

Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes

  • Text
  • PDF
Abstract

The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes.

Authors

Tsuyoshi Inoue, Chikara Abe, Sun-sang J. Sung, Stefan Moscalu, Jakub Jankowski, Liping Huang, Hong Ye, Diane L. Rosin, Patrice G. Guyenet, Mark D. Okusa

×

Figure 9

Protective effect of adoptively transferred splenocytes from VNS-treated mice requires α7nAChRs.

Options: View larger image (or click on image) Download as PowerPoint
Protective effect of adoptively transferred splenocytes from VNS-treated...
α7KO mice and WT (progeny controls) were used as donor mice. Donor mice underwent VNS or sham VNS treatment 1 day before splenocyte transfer. Twenty-four hours later, 1 × 106 splenocytes from donor mice were injected i.v. into the recipient mice (WT). The recipient mice were subjected to IRI 24 hours after the transfer, and plasma creatinine was evaluated 24 hours later. The recipient mice that received splenocytes from VNS-treated WT mice were protected against IRI, but this protection was abolished when the mice received splenocytes from VNS-treated α7KO mice. n = 5 each (n = 4 for PBS-treated group). Data were analyzed using 1-way ANOVA. Means were compared by post hoc multiple-comparison test (Tukey’s). ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts