Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
EGFR regulates macrophage activation and function in bacterial infection
Dana M. Hardbower, Kshipra Singh, Mohammad Asim, Thomas G. Verriere, Danyvid Olivares-Villagómez, Daniel P. Barry, Margaret M. Allaman, M. Kay Washington, Richard M. Peek Jr., M. Blanca Piazuelo, Keith T. Wilson
Dana M. Hardbower, Kshipra Singh, Mohammad Asim, Thomas G. Verriere, Danyvid Olivares-Villagómez, Daniel P. Barry, Margaret M. Allaman, M. Kay Washington, Richard M. Peek Jr., M. Blanca Piazuelo, Keith T. Wilson
View: Text | PDF
Research Article Gastroenterology

EGFR regulates macrophage activation and function in bacterial infection

  • Text
  • PDF
Abstract

EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.

Authors

Dana M. Hardbower, Kshipra Singh, Mohammad Asim, Thomas G. Verriere, Danyvid Olivares-Villagómez, Daniel P. Barry, Margaret M. Allaman, M. Kay Washington, Richard M. Peek Jr., M. Blanca Piazuelo, Keith T. Wilson

×

Figure 4

EgfrΔmye mice have significantly decreased chemokine production in gastric tissue.

Options: View larger image (or click on image) Download as PowerPoint

EgfrΔmye mice have significantly decreased chemokine production in gast...
mRNA and protein levels of the cytokines/chemokines (A) CXCL1, (B) CXCL10, (C) CXCL9, (D) CCL3, (E) CCL5, and (F) CCL4 were assessed by qRT-PCR and Luminex Multiplex Array, respectively, from gastric tissue 4 months p.i. with H. pylori SS1. *P < 0.05 and **P < 0.01, and ***P < 0.001. Statistical significance for A–F was calculated by 1-way ANOVA with the Kruskal-Wallis post test, followed by the Mann-Whitney U test. In all panels, n = 2–5 uninfected and 6–11 infected mice per genotype.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts