Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models
Andrew W. Wong, Brett Z. Fite, Yu Liu, Azadeh Kheirolomoom, Jai W. Seo, Katherine D. Watson, Lisa M. Mahakian, Sarah M. Tam, Hua Zhang, Josquin Foiret, Alexander D. Borowsky, Katherine W. Ferrara
Andrew W. Wong, Brett Z. Fite, Yu Liu, Azadeh Kheirolomoom, Jai W. Seo, Katherine D. Watson, Lisa M. Mahakian, Sarah M. Tam, Hua Zhang, Josquin Foiret, Alexander D. Borowsky, Katherine W. Ferrara
View: Text | PDF
Technical Advance Oncology

Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models

  • Text
  • PDF
Abstract

Magnetic resonance–guided focused ultrasound (MRgFUS) facilitates noninvasive image-guided conformal thermal therapy of cancer. Yet in many scenarios, the sensitive tissues surrounding the tumor constrain the margins of ablation; therefore, augmentation of MRgFUS with chemotherapy may be required to destroy remaining tumor. Here, we used 64Cu-PET-CT, MRI, autoradiography, and fluorescence imaging to track the kinetics of long-circulating liposomes in immunocompetent mammary carcinoma–bearing FVB/n and BALB/c mice. We observed a 5-fold and 50-fold enhancement of liposome and drug concentration, respectively, within MRgFUS thermal ablation–treated tumors along with dense accumulation within the surrounding tissue rim. Ultrasound-enhanced drug accumulation was rapid and durable and greatly increased total tumor drug exposure over time. In addition, we found that the small molecule gadoteridol accumulates around and within ablated tissue. We further demonstrated that dilated vasculature, loss of vascular integrity resulting in extravasation of blood cells, stromal inflammation, and loss of cell-cell adhesion and tissue architecture all contribute to the enhanced accumulation of the liposomes and small molecule probe. The locally enhanced liposome accumulation was preserved even after a multiweek protocol of doxorubicin-loaded liposomes and partial ablation. Finally, by supplementing ablation with concurrent liposomal drug therapy, a complete and durable response was obtained using protocols for which a sub-mm rim of tumor remained after ablation.

Authors

Andrew W. Wong, Brett Z. Fite, Yu Liu, Azadeh Kheirolomoom, Jai W. Seo, Katherine D. Watson, Lisa M. Mahakian, Sarah M. Tam, Hua Zhang, Josquin Foiret, Alexander D. Borowsky, Katherine W. Ferrara

×

Figure 3

Mechanisms for enhanced accumulation after ablation at the boundary between viable and nonviable tissue stained with H&E in the NDL tumor model.

Options: View larger image (or click on image) Download as PowerPoint
Mechanisms for enhanced accumulation after ablation at the boundary betw...
(A) Representative tumor following circle protocol ablation with orientation dye at boundary and black boxes at locations of insets. (B) View of heat-fixed tissue central to beam with surrounding loss of cell-cell adhesion. Necrotic tissue displays loss of glandular tumor architecture visible in heat-fixed and viable tumor. (C) View at border of viable (left) and necrotic (right) tumor and (D) view at border of mammary fat pad with light inflammatory reaction in stroma (black arrow in D) and necrotic tissue (right). (C and D) Viable fat pad and tumor tissue demonstrate dilated blood vessels (white arrow in C) and extravasation of blood cells (black arrow in C), indicating disruption of vascular integrity. Histology was included in all (n = 117) studies. Scale bars: 4 mm (A); 200 μm (B–D).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts