Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer
Mick D. Edmonds, Kelli L. Boyd, Tamara Moyo, Ramkrishna Mitra, Robert Duszynski, Maria Pia Arrate, Xi Chen, Zhongming Zhao, Timothy S. Blackwell, Thomas Andl, Christine M. Eischen
Mick D. Edmonds, Kelli L. Boyd, Tamara Moyo, Ramkrishna Mitra, Robert Duszynski, Maria Pia Arrate, Xi Chen, Zhongming Zhao, Timothy S. Blackwell, Thomas Andl, Christine M. Eischen
View: Text | PDF
Research Article Oncology

MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer

  • Text
  • PDF
Abstract

MicroRNA (miR) are important regulators of gene expression, and aberrant miR expression has been linked to oncogenesis; however, little is understood about their contribution to lung tumorigenesis. Here, we determined that miR-31 is overexpressed in human lung adenocarcinoma and this overexpression independently correlates with decreased patient survival. We developed a transgenic mouse model that allows for lung-specific expression of miR-31 to test the oncogenic potential of miR-31 in the lung. Using this model, we observed that miR-31 induction results in lung hyperplasia, followed by adenoma formation and later adenocarcinoma development. Moreover, induced expression of miR-31 in mice cooperated with mutant KRAS to accelerate lung tumorigenesis. We determined that miR-31 regulates lung epithelial cell growth and identified 6 negative regulators of RAS/MAPK signaling as direct targets of miR-31. Our study distinguishes miR-31 as a driver of lung tumorigenesis that promotes mutant KRAS-mediated oncogenesis and reveals that miR-31 directly targets and reduces expression of negative regulators of RAS/MAPK signaling.

Authors

Mick D. Edmonds, Kelli L. Boyd, Tamara Moyo, Ramkrishna Mitra, Robert Duszynski, Maria Pia Arrate, Xi Chen, Zhongming Zhao, Timothy S. Blackwell, Thomas Andl, Christine M. Eischen

×

Figure 4

miR-31 initiates benign and malignant lung tumor formation in vivo.

Options: View larger image (or click on image) Download as PowerPoint
miR-31 initiates benign and malignant lung tumor formation in vivo.
Coho...
Cohorts of miR-31/CCSP and littermate CCSP control mice were given dox in their drinking water for (A and B) 2 months, (C) 4 months, (D and E) 12 months, or (F–J) 18 months. (A, C, and G–I) Representative photographs of H&E-stained lung sections from miR-31/CCSP mice (original magnification: ×2 [H, left]; ×4 [G]; ×10 [A and C, left, and H, right]; ×20 [I]; ×40 [A and C, right]). Larger histology pictures are shown in Supplemental Figure 5. (B) Ki67 IHC was performed on lung sections (*P = 0.00124, t test). The number of mice evaluated is denoted by n values. (D and F) Representative photographs of (D) Bouin’s fixed lungs and (F) gross lungs, with arrows pointing to tumors. (E) Lung surface tumor nodules were counted on Bouin’s fixed lungs (*P > 0.03, t test). The number of mice evaluated is denoted by n values. (I) Representative photograph of an H&E-stained section of lung adenocarcinoma showing invasion into a blood vessel. (J) Tumor burden was determined by comparing the area of tumor to that of normal lung from H&E-stained lung sections (*P = 0.0145, t test). The number of mice evaluated is denoted by n values. (K) The mean tumor diameter for lung tumors in miR-31/CCSP mice given dox for the indicated intervals was determined from H&E-stained sections.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts