Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Endothelial-to-mesenchymal transition drives atherosclerosis progression
Pei-Yu Chen, … , Martin A. Schwartz, Michael Simons
Pei-Yu Chen, … , Martin A. Schwartz, Michael Simons
Published October 26, 2015
Citation Information: J Clin Invest. 2015;125(12):4514-4528. https://doi.org/10.1172/JCI82719.
View: Text | PDF
Research Article Vascular biology

Endothelial-to-mesenchymal transition drives atherosclerosis progression

  • Text
  • PDF
Abstract

The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α (Frs2a) in atherosclerotic (Apoe–/–) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe–/– counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis.

Authors

Pei-Yu Chen, Lingfeng Qin, Nicolas Baeyens, Guangxin Li, Titilayo Afolabi, Madhusudhan Budatha, George Tellides, Martin A. Schwartz, Michael Simons

×

Figure 11

Mesenchymal and inflammatory marker expression in the endothelium of human coronary arteries.

Options: View larger image (or click on image) Download as PowerPoint
Mesenchymal and inflammatory marker expression in the endothelium of hum...
Left main coronary arteries from patients with no/mild (n = 10), moderate (n = 15), and severe (n = 18) CAD were evaluated. (A and C) Representative images of immunofluorescence staining of left main coronary arteries for fibronectin (green), ICAM-1 (red), and VCAM-1 (red) in patients. Nuclei were stained with DAPI (blue). Scale bar: 16 μm. (B) Percentage of ICAM-1+ ECs in the lumen (**P < 0.01 compared moderate disease to no/mild disease; ***P < 0.001 compared moderate disease to no/mild disease; ***P < 0.001 compared severe disease to no/mild disease). (D) Percentage of VCAM-1+ ECs in the lumen (***P < 0.001 compared moderate disease to no/mild disease; ***P < 0.001 compared severe disease to no/mild disease; 1-way ANOVA with Newman-Keuls post-hoc test for multiple comparison correction). (E and F) Scatter plots of fibronectin area and ICAM-1 and VCAM-1 area per field in the lumen. The corresponding Spearman’s correlation coefficient (r) between fibronectin area and ICAM-1 and VCAM-1 area per field and the P value are shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts