Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter
Yoichi Miyazaki, … , Brigid L.M. Hogan, Iekuni Ichikawa
Yoichi Miyazaki, … , Brigid L.M. Hogan, Iekuni Ichikawa
Published April 1, 2000
Citation Information: J Clin Invest. 2000;105(7):863-873. https://doi.org/10.1172/JCI8256.
View: Text | PDF
Article

Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter

  • Text
  • PDF
Abstract

In the normal mouse embryo, Bmp4 is expressed in mesenchymal cells surrounding the Wolffian duct (WD) and ureter stalk, whereas bone morphogenetic protein (BMP) type I receptor genes are transcribed either ubiquitously (Alk3) or exclusively in the WD and ureter epithelium (Alk6). Bmp4 heterozygous null mutant mice display, with high penetrance, abnormalities that mimic human congenital anomalies of the kidney and urinary tract (CAKUT), including hypo/dysplastic kidneys, hydroureter, ectopic ureterovesical (UV) junction, and double collecting system. Analysis of mutant embryos suggests that the kidney hypo/dysplasia results from reduced branching of the ureter, whereas the ectopic UV junction and double collecting system are due to ectopic ureteral budding from the WD and accessory budding from the main ureter, respectively. In the cultured metanephros deprived of sulfated glycosaminoglycans (S-GAGs), BMP4-loaded beads partially rescue growth and elongation of the ureter. By contrast, when S-GAGs synthesis is not inhibited, BMP4 beads inhibit ureter branching and expression of Wnt 11, a target of glial cell-derived neurotrophic factor signaling. Thus, Bmp4 has 2 functions in the early morphogenesis of the kidney and urinary tract. One is to inhibit ectopic budding from the WD or the ureter stalk by antagonizing inductive signals from the metanephric mesenchyme to the illegitimate sites on the WD. The other is to promote the elongation of the branching ureter within the metanephros, thereby promoting kidney morphogenesis.

Authors

Yoichi Miyazaki, Keisuke Oshima, Agnes Fogo, Brigid L.M. Hogan, Iekuni Ichikawa

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
The ontogeny of hypo/dysplastic kidney in Bmp4+/– embryos. (a) Gross app...
The ontogeny of hypo/dysplastic kidney in Bmp4+/– embryos. (a) Gross appearance of E14.5 kidneys of wild-type (left) and heterozygous mutant (right) embryos. The mutant kidney is distinctively small. (b and c) Sagittal sections of the wild-type (b) and mutant (c) kidneys. The number of nephrogenic components per kidney is depressed in mutants. (d) Pax2 whole-mount in situ hybridization of E12.5 wild-type (left) and mutant (right) kidneys. The condensed mesenchyme is abnormally low in number in mutants. (e) c-ret whole-mount in situ hybridization of E11.5 wild-type (left) and mutant (right) kidneys. The first branch stems (arrows) and the main ureter trunk (between arrowheads) are short in mutants. The size of ureter buds is also smaller in mutants. Ut, main stem of the ureter; WD, Wolffian duct. Bar, 300 μm. (f) The number of condensed mesenchyme per kidney from wild-type (n = 10) and mutant embryos (n = 10) at E12.5 was quantitated. The number is significantly lower in mutant kidneys (P < 0.01 vs. wild-type kidneys). (g) The length of main stem of the ureter was measured in wild-type (n = 14) and heterozygous mutant (n = 16) E11.5 embryos. The difference is statistically significant by Student’s t test (P < 0.001).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts