Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta
Thomas L. Pallone, … , Erik P. Silldorff, A.S. Verkman
Thomas L. Pallone, … , Erik P. Silldorff, A.S. Verkman
Published January 15, 2000
Citation Information: J Clin Invest. 2000;105(2):215-222. https://doi.org/10.1172/JCI8214.
View: Text | PDF
Article

Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta

  • Text
  • PDF
Abstract

Deletion of AQP1 in mice results in diminished urinary concentrating ability, possibly related to reduced NaCl- and urea gradient–driven water transport across the outer medullary descending vasa recta (OMDVR). To quantify the role of AQP1 in OMDVR water transport, we measured osmotically driven water permeability in vitro in microperfused OMDVR from wild-type, AQP1 heterozygous, and AQP1 knockout mice. OMDVR diameters in AQP1–/– mice were 1.9-fold greater than in AQP1+/+ mice. Osmotic water permeability (Pf) in response to a 200 mM NaCl gradient (bath > lumen) was reduced about 2-fold in AQP1+/– mice and by more than 50-fold in AQP1–/– mice. Pf increased from 1015 to 2527 μm/s in AQP1+/+ mice and from 22 to 1104 μm/s in AQP1–/– mice when a raffinose rather than an NaCl gradient was used. This information, together with p-chloromercuribenzenesulfonate inhibition measurements, suggests that nearly all NaCl-driven water transport occurs by a transcellular route through AQP1, whereas raffinose-driven water transport also involves a parallel, AQP1-independent, mercurial-insensitive pathway. Interestingly, urea was also able to drive water movement across the AQP1-independent pathway. Diffusional permeabilities to small hydrophilic solutes were comparable in AQP1+/+ and AQP1–/– mice but higher than those previously measured in rats. In a mathematical model of the medullary microcirculation, deletion of AQP1 resulted in diminished concentrating ability due to enhancement of medullary blood flow, partially accounting for the observed urine-concentrating defect.

Authors

Thomas L. Pallone, Aurélie Edwards, Tonghui Ma, Erik P. Silldorff, A.S. Verkman

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Light micrographs of OMDVR from AQP1+/+ mice and AQP1–/– mice. Four OMDV...
Light micrographs of OMDVR from AQP1+/+ mice and AQP1–/– mice. Four OMDVR from AQP1+/+ mice are shown in the left panel, and 3 OMDVR from AQP1–/– mice are shown at right. Deletion of AQP1 leads to an increase in OMDVR diameter.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts