Wei Ying, Alexander Tseng, Richard Cheng-An Chang, Andrew Morin, Tyler Brehm, Karen Triff, Vijayalekshmi Nair, Guoqing Zhuang, Hui Song, Srikanth Kanameni, Haiqing Wang, Michael C. Golding, Fuller W. Bazer, Robert S. Chapkin, Stephen Safe, Beiyan Zhou
Wei Ying, Alexander Tseng, Richard Cheng-An Chang, Andrew Morin, Tyler Brehm, Karen Triff, Vijayalekshmi Nair, Guoqing Zhuang, Hui Song, Srikanth Kanameni, Haiqing Wang, Michael C. Golding, Fuller W. Bazer, Robert S. Chapkin, Stephen Safe, Beiyan Zhou
Abstract
Polarized activation of adipose tissue macrophages (ATMs) is crucial for maintaining adipose tissue function and mediating obesity-associated cardiovascular risk and metabolic abnormalities; however, the regulatory network of this key process is not well defined. Here, we identified a PPARγ/microRNA-223 (miR-223) regulatory axis that controls macrophage polarization by targeting distinct downstream genes to shift the cellular response to various stimuli. In BM-derived macrophages, PPARγ directly enhanced miR-223 expression upon exposure to Th2 stimuli. ChIP analysis, followed by enhancer reporter assays, revealed that this effect was mediated by PPARγ binding 3 PPARγ regulatory elements (PPREs) upstream of the pre–miR-223 coding region. Moreover, deletion of miR-223 impaired PPARγ-dependent macrophage alternative activation in cells cultured ex vivo and in mice fed a high-fat diet. We identified Rasa1 and Nfat5 as genuine miR-223 targets that are critical for PPARγ-dependent macrophage alternative activation, whereas the proinflammatory regulator Pknox1, which we reported previously, mediated miR-223–regulated macrophage classical activation. In summary, this study provides evidence to support the crucial role of a PPARγ/miR-223 regulatory axis in controlling macrophage polarization via distinct downstream target genes.
Authors
Wei Ying, Alexander Tseng, Richard Cheng-An Chang, Andrew Morin, Tyler Brehm, Karen Triff, Vijayalekshmi Nair, Guoqing Zhuang, Hui Song, Srikanth Kanameni, Haiqing Wang, Michael C. Golding, Fuller W. Bazer, Robert S. Chapkin, Stephen Safe, Beiyan Zhou
×
Download this citation for these citation managers:
Or, download this citation in these formats:
If you experience problems using these citation formats, send us feedback.
|
|
|