Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Idiopathic pediatric chronic kidney disease: can genomic technology crack the case?
Martin R. Pollak
Martin R. Pollak
Published April 20, 2015
Citation Information: J Clin Invest. 2015;125(5):1799-1800. https://doi.org/10.1172/JCI81509.
View: Text | PDF
Commentary

Idiopathic pediatric chronic kidney disease: can genomic technology crack the case?

  • Text
  • PDF
Abstract

In children, chronic kidney disease (CKD) that results from structural abnormalities and glomerular injury is readily diagnosed; however, most cases of pediatric CKD are of unknown etiology. In this issue of the JCI, Verbitsky and colleagues used chromosomal microarrays to evaluate genomic variation in children with CKD. Compared with control individuals, a substantial proportion of children with idiopathic CKD had clearly identifiable genomic imbalances. Moreover, in some cases, detailed analysis of these imbalances identified pathogenic alterations that were unsuspected based on clinical presentation. The results of this study support genome-wide evaluation for pediatric cases of CKD; however, more work will need to be done before such an approach is widely available in the clinic.

Authors

Martin R. Pollak

×

Full Text PDF | Download (183.40 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts