Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
The biology and function of exosomes in cancer
Raghu Kalluri
Raghu Kalluri
Published April 1, 2016
Citation Information: J Clin Invest. 2016;126(4):1208-1215. https://doi.org/10.1172/JCI81135.
View: Text | PDF
Category: Review Series

The biology and function of exosomes in cancer

  • Text
  • PDF
Abstract

Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40–150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients.

Authors

Raghu Kalluri

×

Figure 1

Exosome biology and heterogeneity is a reflection of the origin and status of the originating tissue or cell at the time of exosome generation.

Options: View larger image (or click on image) Download as PowerPoint
Exosome biology and heterogeneity is a reflection of the origin and stat...
(A) In culture, the same cell type can produce exosomes with distinct nucleic acids and proteins above the baseline of some common protein markers. Exosome production can be dynamic, with the same cell shedding exosomes with different compositions based on their health status. (B) It has been assumed that exosomes are cellular trash bags for elimination of excess proteins, but many studies have shown that exosomes often exhibit certain specific markers, irrespective of the organ or cellular source. This suggests that certain proteins are transported to the exosomes with some degree of specificity. Additionally, distinct differences have been identified in the RNA and protein species present in exosomes, likely reflecting cellular and organ specificity. This second layer of complexity is dynamic and can change with the evolving status of the organ and cells within. Here, the pancreas is provided as an example, but this dynamism in exosomal contents presumably holds true for all organs. Therefore, exosome heterogeneity is a much more complex phenomenon than cellular heterogeneity and can be fleeting depending on stimuli and the functional status of the organ.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts