Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Exploiting metabolic and antioxidant pathways to maintain vision in blinding disease
Pavitra S. Ramachandran, … , Ji Yun Song, Jean Bennett
Pavitra S. Ramachandran, … , Ji Yun Song, Jean Bennett
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1390-1392. https://doi.org/10.1172/JCI80821.
View: Text | PDF
Commentary

Exploiting metabolic and antioxidant pathways to maintain vision in blinding disease

  • Text
  • PDF
Abstract

The use of gene therapy for blinding disease shows growing promise; however, due to an ever-expanding list of disease-causing genes and mutations, the identification of a generic gene-based treatment is urgently needed. In many forms of degenerative retinal disease, there may be a window of opportunity to preserve daylight vision, as the cone photoreceptors degenerate more slowly than do the rods. In this issue of the JCI, Venkatesh et al. and Xiong et al. exploit two different pathways to promote cone cell survival and preserve vision in murine retinal degeneration models. These studies provide hope for developing a universal reagent to treat many different blinding disorders.

Authors

Pavitra S. Ramachandran, Ji Yun Song, Jean Bennett

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 262 23
PDF 83 15
Figure 65 0
Citation downloads 93 0
Totals 503 38
Total Views 541

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts