Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth.
P Valet, … , J S Saulnier-Blache, M Lafontan
P Valet, … , J S Saulnier-Blache, M Lafontan
Published April 1, 1998
Citation Information: J Clin Invest. 1998;101(7):1431-1438. https://doi.org/10.1172/JCI806.
View: Text | PDF
Research Article

Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth.

  • Text
  • PDF
Abstract

In the search for the existence of adrenergic regulation of the autocrine/paracrine function of the white adipose tissue, it was observed that conditioned media from isolated adipocytes or dialysates obtained by in situ microdialysis of human subcutaneous adipose tissue increased spreading and proliferation of 3T3F442A preadipocytes. These effects were amplified when an alpha2-adrenergic agonist was present during the obtention of conditioned media and microdialysates. This alpha2-adrenergic-dependent trophic activity was completely abolished by pretreatment of the conditioned media or microdialysates with the lysophospholipase, phospholipase B. Among the different lysophospholipids tested only lysophosphatidic acid (LPA) was able to induce spreading and proliferation of 3T3F442A preadipocytes. Moreover, previous chronic treatment of 3T3F442A preadipocytes with LPA which led to a specific desensitization of LPA responsiveness, abolished the alpha2-adrenergic-dependent trophic activities of the conditioned media and microdialysates. Finally, alpha2-adrenergic stimulation led to a rapid, sustained, and pertussis toxin-dependent release of [32P]LPA from [32P]-labeled adipocytes. Based upon these results it was proposed that in vitro and in situ stimulation of adipocyte alpha2-adrenergic receptors provokes the extracellular release of LPA leading, in turn, to regulation of preadipocyte growth.

Authors

P Valet, C Pagès, O Jeanneton, D Daviaud, P Barbe, M Record, J S Saulnier-Blache, M Lafontan

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 235 20
PDF 56 19
Citation downloads 59 0
Totals 350 39
Total Views 389
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts