Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The role of HIV integration in viral persistence: no more whistling past the proviral graveyard
Frank Maldarelli
Frank Maldarelli
Published February 1, 2016
Citation Information: J Clin Invest. 2016;126(2):438-447. https://doi.org/10.1172/JCI80564.
View: Text | PDF
Review Series

The role of HIV integration in viral persistence: no more whistling past the proviral graveyard

  • Text
  • PDF
Abstract

A substantial research effort has been directed to identifying strategies to eradicate or control HIV infection without a requirement for combination antiretroviral therapy (cART). A number of obstacles prevent HIV eradication, including low-level viral persistence during cART, long-term persistence of HIV-infected cells, and latent infection of resting CD4+ T cells. Mechanisms of persistence remain uncertain, but integration of the provirus into the host genome represents a central event in replication and pathogenesis of all retroviruses, including HIV. Analysis of HIV proviruses in CD4+ lymphocytes from individuals after prolonged cART revealed that a substantial proportion of the infected cells that persist have undergone clonal expansion and frequently have proviruses integrated in genes associated with regulation of cell growth. These data suggest that integration may influence persistence and clonal expansion of HIV-infected cells after cART is introduced, and these processes may represent key mechanisms for HIV persistence. Determining the diversity of host genes with integrants in HIV-infected cells that persist for prolonged periods may yield useful information regarding pathways by which infected cells persist for prolonged periods. Moreover, many integrants are defective, and new studies are required to characterize the role of clonal expansion in the persistence of replication-competent HIV.

Authors

Frank Maldarelli

×

Figure 1

Establishing the HIV provirus.

Options: View larger image (or click on image) Download as PowerPoint
Establishing the HIV provirus.
(A) HIV infects susceptible cells, and re...
(A) HIV infects susceptible cells, and reverse transcription takes place early after infection, following attachment and fusion. Both RNA copies are required for replication, and multiple strand transfers between the two molecules occur, resulting in frequent recombination. The terminal repeats are duplicated at each end of the integration, and the product of reverse transcription is a full-length molecule containing LTRs. As a consequence of complex interactions and strand transfers, defective copies with large internal deletions (but intact 5′ and 3′ ends) are frequent products of reverse transcription. Reverse transcripts with HIV Gag p24 and IN compose the viral PIC, which is transported to the nucleus, a process requiring specific host proteins, including nucleoporins. In the nucleus, PIC structures interact with host protein LEDGF/p75, which preferentially facilitates integration in areas of transcriptional activity. (B) IN is a dimer of dimers that creates 5-bp staggered cuts in each DNA strand of the integration site, resulting in a 5-nt duplication of the host sequence for each integrant. Integration is completed by host enzymes, which fill in the staggered cuts. Integration sites are frequently mutated or internally deleted, but have precise integration sites with duplications of the host sequence at each end of the provirus. (C) Not all of the newly synthesized viral DNA molecules are integrated into the host genome; a subset of DNA molecules form circular molecules that include one or both LTRs (1- and 2-LTR circles).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts