Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Targeting ceramide synthase 6–dependent metastasis-prone phenotype in lung cancer cells
Motoshi Suzuki, … , Mamoru Kyogashima, Takashi Takahashi
Motoshi Suzuki, … , Mamoru Kyogashima, Takashi Takahashi
Published December 7, 2015
Citation Information: J Clin Invest. 2016;126(1):254-265. https://doi.org/10.1172/JCI79775.
View: Text | PDF | Expression of Concern | Retraction
Research Article Oncology

Targeting ceramide synthase 6–dependent metastasis-prone phenotype in lung cancer cells

  • Text
  • PDF
Abstract

Sphingolipids make up a family of molecules associated with an array of biological functions, including cell death and migration. Sphingolipids are often altered in cancer, though how these alterations lead to tumor formation and progression is largely unknown. Here, we analyzed non–small-cell lung cancer (NSCLC) specimens and cell lines and determined that ceramide synthase 6 (CERS6) is markedly overexpressed compared with controls. Elevated CERS6 expression was due in part to reduction of microRNA-101 (miR-101) and was associated with increased invasion and poor prognosis. CERS6 knockdown in NSCLC cells altered the ceramide profile, resulting in decreased cell migration and invasion in vitro, and decreased the frequency of RAC1-positive lamellipodia formation while CERS6 overexpression promoted it. In murine models, CERS6 knockdown in transplanted NSCLC cells attenuated lung metastasis. Furthermore, combined treatment with l-α-dimyristoylphosphatidylcholine liposome and the glucosylceramide synthase inhibitor D-PDMP induced cell death in association with ceramide accumulation and promoted cancer cell apoptosis and tumor regression in murine models. Together, these results indicate that CERS6-dependent ceramide synthesis and maintenance of ceramide in the cellular membrane are essential for lamellipodia formation and metastasis. Moreover, these results suggest that targeting this homeostasis has potential as a therapeutic strategy for CERS6-overexpressing NSCLC.

Authors

Motoshi Suzuki, Ke Cao, Seiichi Kato, Yuji Komizu, Naoki Mizutani, Kouji Tanaka, Chinatsu Arima, Mei Chee Tai, Kiyoshi Yanagisawa, Norie Togawa, Takahiro Shiraishi, Noriyasu Usami, Tetsuo Taniguchi, Takayuki Fukui, Kohei Yokoi, Keiko Wakahara, Yoshinori Hasegawa, Yukiko Mizutani, Yasuyuki Igarashi, Jin-ichi Inokuchi, Soichiro Iwaki, Satoshi Fujii, Akira Satou, Yoko Matsumoto, Ryuichi Ueoka, Keiko Tamiya-Koizumi, Takashi Murate, Mitsuhiro Nakamura, Mamoru Kyogashima, Takashi Takahashi

×

Figure 7

DMPC liposome and glucosylceramide synthase inhibitor D-PDMP synergistically induce apoptosis in vitro.

Options: View larger image (or click on image) Download as PowerPoint
DMPC liposome and glucosylceramide synthase inhibitor D-PDMP synergistic...
(A) Cell viability of LNM35 and TIG112 cells treated with 0, 5, 10, or 20 μM D-PDMP, with or without 40 μM DMPC liposome (mean ± SD; n = 4). (B) Isobologram analysis of DMPC liposome and D-PDMP. Horizontal and vertical axes indicate the proportions of D-PDMP and DMPC liposome, respectively. For additional analyses, see Supplemental Figure 11. (C) Effects of siCERS6-1 on apoptosis induced by 10 μM D-PDMP and/or 40 μM DMPC liposome (mean ± SD; n = 4). (D) Ceramide quantification in LNM35 cells treated with 200 μM DMPC liposome and/or 20 μM D-PDMP (mean ± SD; n = 3).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts