Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Chemotaxis of primitive hematopoietic cells in response to stromal cell–derived factor-1
Deog-Yeon Jo, … , Tsuneyoshi Hamada, Malcolm A.S. Moore
Deog-Yeon Jo, … , Tsuneyoshi Hamada, Malcolm A.S. Moore
Published January 1, 2000
Citation Information: J Clin Invest. 2000;105(1):101-111. https://doi.org/10.1172/JCI7954.
View: Text | PDF
Article

Chemotaxis of primitive hematopoietic cells in response to stromal cell–derived factor-1

  • Text
  • PDF
Abstract

Stromal cell–derived factor-1 (SDF-1) provides a potent chemotactic stimulus for CD34+ hematopoietic cells. We cultured mobilized peripheral blood (PB) and umbilical cord blood (CB) for up to 5 weeks and examined the migratory activity of cobblestone area–forming cells (CAFCs) and long-term culture–initiating cells (LTC-ICs) in a transwell assay. In this system, SDF-1 or MS-5 marrow stromal cells placed in the lower chamber induced transmembrane and transendothelial migration by 2- and 5-week-old CAFCs and LTC-ICs in 3 hours. Transmigration was blocked by preincubation of input CD34+ cells with antibody to CXCR4. Transendothelial migration of CB CAFCs and LTC-ICs was higher than that of PB. We expanded CD34+ cells from CB in serum-free medium with thrombopoietin, flk-2 ligand, and c-kit ligand, with or without IL-3 and found that CAFCs cultured in the absence of IL-3 had a chemotactic response equivalent to noncultured cells, even after 5 weeks. However, addition of IL-3 to the culture reduced this response by 20–50%. These data indicate that SDF-1 induces chemotaxis of primitive hematopoietic cells signaling through CXCR4 and that the chemoattraction could be downmodulated by culture ex vivo.

Authors

Deog-Yeon Jo, Shahin Rafii, Tsuneyoshi Hamada, Malcolm A.S. Moore

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
(a) Experimental design for “closed system” studies of transmembrane (mi...
(a) Experimental design for “closed system” studies of transmembrane (middle) and transendothelial (right) chemotaxis of CAFCs and LTC-ICs in CD34+ populations placed in the upper chamber of a transwell system, with or without a monolayer of endothelial cells (BMEC-1), with MS-5 cells in the lower chamber as a source of SDF-1 and as a support for CAFCs and LTC-ICs in long-term (5-week) cultures. (b) Experimental design for “open system” studies transmembrane and transendothelial chemotaxis of CAFCs and LTC-ICs in CD34+ populations placed in the upper chamber of a transwell system, with or without a monolayer of endothelial cells (BMEC-1), and with recombinant SDF-1 in the lower chamber (middle). CAFCs and LTC-ICs are assayed by recovery of cells from the upper and lower chambers and secondary transfer to MS-5 monolayers for long-term (5-week) cultures (right). (c) Design as in b but substituting an established monolayer of MS-5 in the lower chamber as a source of SDF-1.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts