Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Engineering the gut microbiota to treat hyperammonemia
Ting-Chin David Shen, … , Frederic D. Bushman, Gary D. Wu
Ting-Chin David Shen, … , Frederic D. Bushman, Gary D. Wu
Published June 22, 2015
Citation Information: J Clin Invest. 2015;125(7):2841-2850. https://doi.org/10.1172/JCI79214.
View: Text | PDF
Research Article Gastroenterology

Engineering the gut microbiota to treat hyperammonemia

  • Text
  • PDF
Abstract

Increasing evidence indicates that the gut microbiota can be altered to ameliorate or prevent disease states, and engineering the gut microbiota to therapeutically modulate host metabolism is an emerging goal of microbiome research. In the intestine, bacterial urease converts host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-associated neurotoxicity and encephalopathy in patients with liver disease. Here, we engineered murine gut microbiota to reduce urease activity. Animals were depleted of their preexisting gut microbiota and then inoculated with altered Schaedler flora (ASF), a defined consortium of 8 bacteria with minimal urease gene content. This protocol resulted in establishment of a persistent new community that promoted a long-term reduction in fecal urease activity and ammonia production. Moreover, in a murine model of hepatic injury, ASF transplantation was associated with decreased morbidity and mortality. These results provide proof of concept that inoculation of a prepared host with a defined gut microbiota can lead to durable metabolic changes with therapeutic utility.

Authors

Ting-Chin David Shen, Lindsey Albenberg, Kyle Bittinger, Christel Chehoud, Ying-Yu Chen, Colleen A. Judge, Lillian Chau, Josephine Ni, Michael Sheng, Andrew Lin, Benjamin J. Wilkins, Elizabeth L. Buza, James D. Lewis, Yevgeny Daikhin, Ilana Nissim, Marc Yudkoff, Frederic D. Bushman, Gary D. Wu

×

Figure 1

Transfer of ASF into a previously colonized murine host.

Options: View larger image (or click on image) Download as PowerPoint
Transfer of ASF into a previously colonized murine host.
(A) Diagram of ...
(A) Diagram of the experimental method. Ure, urease. (B) Shotgun metagenomic analysis of stool from ASF-colonized animals used for gavage in this study. Proportions of the different ASF lineages and other organisms are indicated by the color key. (C) Time course of 16S rRNA gene copy numbers during oral ABX treatment (14 days, vancomycin and neomycin) and upon discontinuation of ABX on day 15 (n = 3 per group). *P < 0.0001, for days 0–2 compared with the average of days 5–15 in the ABX group; **P < 0.05, between the ABX and control groups. Paired-sample t test and 2-tailed Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts