Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production
Yanhong Guo, … , Raul Urrutia, Y. Eugene Chen
Yanhong Guo, … , Raul Urrutia, Y. Eugene Chen
Published September 14, 2015
Citation Information: J Clin Invest. 2015;125(10):3819-3830. https://doi.org/10.1172/JCI79048.
View: Text | PDF
Research Article Cardiology

Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production

  • Text
  • PDF
Abstract

Recent genome-wide association studies have revealed that variations near the gene locus encoding the transcription factor Krüppel-like factor 14 (KLF14) are strongly associated with HDL cholesterol (HDL-C) levels, metabolic syndrome, and coronary heart disease. However, the precise mechanisms by which KLF14 regulates lipid metabolism and affects atherosclerosis remain largely unexplored. Here, we report that KLF14 is dysregulated in the liver of 2 dyslipidemia mouse models. We evaluated the effects of both KLF14 overexpression and genetic inactivation and determined that KLF14 regulates plasma HDL-C levels and cholesterol efflux capacity by modulating hepatic ApoA-I production. Hepatic-specific Klf14 deletion in mice resulted in decreased circulating HDL-C levels. In an attempt to pharmacologically target KLF14 as an experimental therapeutic approach, we identified perhexiline, an approved therapeutic small molecule presently in clinical use to treat angina and heart failure, as a KLF14 activator. Indeed, in WT mice, treatment with perhexiline increased HDL-C levels and cholesterol efflux capacity via KLF14-mediated upregulation of ApoA-I expression. Moreover, perhexiline administration reduced atherosclerotic lesion development in apolipoprotein E–deficient mice. Together, these results provide comprehensive insight into the KLF14-dependent regulation of HDL-C and subsequent atherosclerosis and indicate that interventions that target the KLF14 pathway should be further explored for the treatment of atherosclerosis.

Authors

Yanhong Guo, Yanbo Fan, Jifeng Zhang, Gwen A. Lomberk, Zhou Zhou, Lijie Sun, Angela J. Mathison, Minerva T. Garcia-Barrio, Ji Zhang, Lixia Zeng, Lei Li, Subramaniam Pennathur, Cristen J. Willer, Daniel J. Rader, Raul Urrutia, Y. Eugene Chen

×

Figure 4

Drug screening identifies perhexiline as an activator of KLF14.

Options: View larger image (or click on image) Download as PowerPoint
Drug screening identifies perhexiline as an activator of KLF14.
(A) Diag...
(A) Diagram of the chemical structure of the perhexiline maleate salt. (B and C) Luciferase activity of reporters was analyzed in HepG2 cells transfected with pGL4-KLF-luc or pGL4–ApoA-I–Luc constructs after 12 hours treatment with 10 μM perhexiline or DMSO. **P < 0.01, Student’s t test. Values represent mean ± SEM; n = 3. (D) HepG2 cells were infected with AdshLacZ or AdshKLF14 for 48 hours and then incubated with 10 μM perhexiline for 24 hours in DMEM containing 0.2% BSA. The ApoA-I concentrations in the medium were detected by ELISA. *P < 0.05, 2-way ANOVA and multiple comparisons. Values represent mean ± SEM; n = 6. (E) HepG2 cells were treated with DMSO or perhexiline at 10 μM for indicated time points in DMEM containing 0.2% BSA, and ApoA-I production was detected by Western blot. (F) HepG2 cells were treated with DMSO or perhexiline at indicated dosage for 24 hours in DMEM containing 0.2% BSA, and ApoA-I production was detected by Western blot. (G) HepG2 cells were treated with DMSO, perhexiline, RVX-208, or etomoxir at 10 μM for 24 hours in DMEM containing 0.2% BSA, and ApoA-I production was detected by Western blot. Quantifications from 3 independent experiments are shown in E–G, and values represent mean ± SEM. *P < 0.05; **P < 0.01, 2-way ANOVA and multiple comparisons.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts