Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effects of chronic hypoxia and altered hemodynamics on endothelial nitric oxide synthase expression in the adult rat lung.
T D Le Cras, … , R A Johns, S H Abman
T D Le Cras, … , R A Johns, S H Abman
Published February 15, 1998
Citation Information: J Clin Invest. 1998;101(4):795-801. https://doi.org/10.1172/JCI786.
View: Text | PDF
Research Article

Effects of chronic hypoxia and altered hemodynamics on endothelial nitric oxide synthase expression in the adult rat lung.

  • Text
  • PDF
Abstract

Mechanisms that regulate endothelial nitric oxide synthase (eNOS) expression in normal and hypoxic pulmonary circulation are poorly understood. Lung eNOS expression is increased after chronic hypoxic pulmonary hypertension in rats, but whether this increase is due to altered hemodynamics or to hypoxia is unknown. Therefore, to determine the effect of blood flow changes on eNOS expression in the normal pulmonary circulation, and to determine whether the increase in eNOS expression after chronic hypoxia is caused by hemodynamic changes or low oxygen tension, we compared eNOS expression in the left and right lungs of normoxic and chronically hypoxic rats with surgical stenosis of the left pulmonary artery (LPA). LPA stenosis in normoxic rats reduced blood flow to the left lung from 9.8+/-0.9 to 0.8+/-0.4 ml/100 mg/min (sham surgery controls vs. LPA stenosis, P < 0.05), but there was not a significant increase in right lung blood flow. When compared with the right lung, eNOS protein and mRNA content in the left lung was decreased by 32+/-7 and 54+/-13%, respectively (P < 0.05), and right lung eNOS protein content was unchanged. After 3 wk of hypoxia, LPA stenosis reduced blood flow to the left lung from 5.8+/-0.6 to 1.5+/-0.4 ml/100 mg/min, and increased blood flow to the right lung from 5.8+/-0.5 to 10.0+/-1.4 ml/ 100 mg/min (sham surgery controls vs. LPA stenosis, P < 0.05). Despite reduced flow and pressure to the left lung and increased flow and pressure to the right lung, left and right lung eNOS protein and mRNA contents were not different. There were also no differences in lung eNOS protein levels when compared with chronically hypoxic sham surgery controls (P > 0.05). We conclude that reduction of pulmonary blood flow decreases eNOS mRNA and protein expression in normoxic adult rat lungs, and that hypoxia increases eNOS expression independently of changes in hemodynamics. These findings demonstrate that hemodynamic forces maintain eNOS content in the normoxic pulmonary circulation of the adult rat, and suggest that chronic hypoxia increases eNOS expression independently of changes in hemodynamics.

Authors

T D Le Cras, R C Tyler, M P Horan, K G Morris, R M Tuder, I F McMurtry, R A Johns, S H Abman

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 190 16
PDF 49 16
Citation downloads 44 0
Totals 283 32
Total Views 315
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts