Nemaline myopathy (NM) is a rare autosomal dominant skeletal muscle myopathy characterized by severe muscle weakness and the subsequent appearance of nemaline rods within the muscle fibers. Recently, a missense mutation inTPM3, which encodes the slow skeletal α-tropomyosin (αTm), was linked to NM in a large kindred with an autosomal-dominant, childhood-onset form of the disease. We used adenoviral gene transfer to fully differentiated rat adult myocytes in vitro to determine the effects of NM mutant human αTm expression on striated muscle sarcomeric structure and contractile function. The mutant αTm was expressed and incorporated correctly into sarcomeres of adult muscle cells. The primary defect caused by expression of the mutant αTm was a decrease in the sensitivity of contraction to activating Ca2+, which could help explain the hypotonia seen in NM. Interestingly, NM mutant αTm expression did not directly result in nemaline rod formation, which suggests that rod formation is secondary to contractile dysfunction and that load-dependent processes are likely involved in nemaline rod formation in vivo.
Daniel E. Michele, Faris P. Albayya, Joseph M. Metzger
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 281 | 24 |
56 | 12 | |
Figure | 206 | 3 |
Table | 113 | 0 |
Citation downloads | 121 | 0 |
Totals | 777 | 39 |
Total Views | 816 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.