Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Checkpoints that control B cell development
Fritz Melchers
Fritz Melchers
Published May 4, 2015
Citation Information: J Clin Invest. 2015;125(6):2203-2210. https://doi.org/10.1172/JCI78083.
View: Text | PDF
Review Series

Checkpoints that control B cell development

  • Text
  • PDF
Abstract

B cells differentiate from pluripotent hematopoietic stem cells (pHSCs) in a series of distinct stages. During early embryonic development, pHSCs migrate into the fetal liver, where they develop and mature to B cells in a transient wave, which preferentially populates epithelia and lung as well as gut-associated lymphoid tissues. This is followed by continuous B cell development throughout life in the bone marrow to immature B cells that migrate to secondary lymphoid tissues, where they mature. At early stages of development, before B cell maturation, the gene loci encoding the heavy and light chains of immunoglobulin that determine the B cell receptor composition undergo stepwise rearrangements of variable region-encoding gene segments. Throughout life, these gene rearrangements continuously generate B cell repertoires capable of recognizing a plethora of self-antigens and non–self-antigens. The microenvironment in which these B cell repertoires develop provide signaling molecules that play critical roles in promoting gene rearrangements, proliferation, survival, or apoptosis, and that help to distinguish self-reactive from non–self-reactive B cells at four distinct checkpoints. This refinement of the B cell repertoire directly contributes to immunity, and defects in the process contribute to autoimmune disease.

Authors

Fritz Melchers

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 2,181 908
PDF 223 125
Figure 368 6
Citation downloads 86 0
Totals 2,858 1,039
Total Views 3,897
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts