Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Designer aminoglycosides prevent cochlear hair cell loss and hearing loss
Markus E. Huth, … , Alan G. Cheng, Anthony J. Ricci
Markus E. Huth, … , Alan G. Cheng, Anthony J. Ricci
Published January 2, 2015
Citation Information: J Clin Invest. 2015;125(2):583-592. https://doi.org/10.1172/JCI77424.
View: Text | PDF
Research Article Otology

Designer aminoglycosides prevent cochlear hair cell loss and hearing loss

  • Text
  • PDF
Abstract

Bacterial infections represent a rapidly growing challenge to human health. Aminoglycosides are widely used broad-spectrum antibiotics, but they inflict permanent hearing loss in up to ~50% of patients by causing selective sensory hair cell loss. Here, we hypothesized that reducing aminoglycoside entry into hair cells via mechanotransducer channels would reduce ototoxicity, and therefore we synthesized 9 aminoglycosides with modifications based on biophysical properties of the hair cell mechanotransducer channel and interactions between aminoglycosides and the bacterial ribosome. Compared with the parent aminoglycoside sisomicin, all 9 derivatives displayed no or reduced ototoxicity, with the lead compound N1MS 17 times less ototoxic and with reduced penetration of hair cell mechanotransducer channels in rat cochlear cultures. Both N1MS and sisomicin suppressed growth of E. coli and K. pneumoniae, with N1MS exhibiting superior activity against extended spectrum β lactamase producers, despite diminished activity against P. aeruginosa and S. aureus. Moreover, systemic sisomicin treatment of mice resulted in 75% to 85% hair cell loss and profound hearing loss, whereas N1MS treatment preserved both hair cells and hearing. Finally, in mice with E. coli–infected bladders, systemic N1MS treatment eliminated bacteria from urinary tract tissues and serially collected urine samples, without compromising auditory and kidney functions. Together, our findings establish N1MS as a nonototoxic aminoglycoside and support targeted modification as a promising approach to generating nonototoxic antibiotics.

Authors

Markus E. Huth, Kyu-Hee Han, Kayvon Sotoudeh, Yi-Ju Hsieh, Thomas Effertz, Andrew A. Vu, Sarah Verhoeven, Michael H. Hsieh, Robert Greenhouse, Alan G. Cheng, Anthony J. Ricci

×

Figure 2

Sisomicin and its novel derivatives exhibit antibacterial activities.

Options: View larger image (or click on image) Download as PowerPoint
Sisomicin and its novel derivatives exhibit antibacterial activities.
Th...
The MICs and MBCs of sisomicin and 9 derivatives were quantified. Using 4 μg/ml (drawn as dotted line) as the criteria set forth by the Clinical and Laboratory Standards Institute, we found that sisomicin, N1MS, and N1PS robustly inhibited growth of and killed E. coli. Data are shown as average ± SEM. n = 5.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts