Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Platelet-activating factor mediates acid-induced lung injury in genetically engineered mice
Takahide Nagase, … , Yasuyoshi Ouchi, Takao Shimizu
Takahide Nagase, … , Yasuyoshi Ouchi, Takao Shimizu
Published October 15, 1999
Citation Information: J Clin Invest. 1999;104(8):1071-1076. https://doi.org/10.1172/JCI7727.
View: Text | PDF
Article

Platelet-activating factor mediates acid-induced lung injury in genetically engineered mice

  • Text
  • PDF
Abstract

Adult respiratory distress syndrome (ARDS) is an acute lung injury of high mortality rate, and the molecular mechanisms underlying it are poorly understood. Acid aspiration–induced lung injury is one of the most common causes of ARDS, characterized by an increase in lung permeability, enhanced polymorphonuclear neutrophil (PMN) sequestration, and respiratory failure. Here, we investigated the role of platelet-activating factor (PAF) and the PAF receptor (PAFR) gene in a murine model of acid aspiration–induced lung injury. Overexpression of the PAFR gene in transgenic mice enhanced lung injury, pulmonary edema, and deterioration of gas exchange caused by HCl aspiration. Conversely, mice carrying a targeted disruption of the PAFR gene experienced significantly less acid-induced injury, edema, and respiratory failure. Nevertheless, the efficiency of PMN sequestration in response to acid aspiration was unaffected by differences in PAFR expression level. The current observations suggest that PAF is involved in the pathogenesis of acute lung injury caused by acid aspiration. Thus, inhibition of this pathway might provide a novel therapeutic approach to acute lung injury, for which no specific pharmaceutical agents are currently available.

Authors

Takahide Nagase, Satoshi Ishii, Kazuhiko Kume, Naonori Uozumi, Takashi Izumi, Yasuyoshi Ouchi, Takao Shimizu

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Roles of the PAFR gene in acid-induced hypoxemia. PaO2 level 2 hours aft...
Roles of the PAFR gene in acid-induced hypoxemia. PaO2 level 2 hours after aspiration (n = 8–10). Responses after the administration of HCl (filled bars) or saline (open bars) are shown. *P < 0.001 vs. saline-treated groups. #P < 0.001 vs. HCl-treated controls.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts