Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis
Takahide Tohmonda, Masaki Yoda, Takao Iwawaki, Morio Matsumoto, Masaya Nakamura, Katsuhiko Mikoshiba, Yoshiaki Toyama, Keisuke Horiuchi
Takahide Tohmonda, Masaki Yoda, Takao Iwawaki, Morio Matsumoto, Masaya Nakamura, Katsuhiko Mikoshiba, Yoshiaki Toyama, Keisuke Horiuchi
View: Text | PDF
Research Article Bone biology

IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis

  • Text
  • PDF
Abstract

The unfolded protein response (UPR) is a cellular adaptive mechanism that is activated in response to the accumulation of unfolded proteins in the endoplasmic reticulum. The inositol-requiring protein-1α/X-box–binding protein–mediated (IRE1α/XBP1-mediated) branch of the UPR is highly conserved and has also been shown to regulate various cell-fate decisions. Herein, we have demonstrated a crucial role for the IREα/XBP1-mediated arm of the UPR in osteoclast differentiation. Using murine models, we found that the conditional abrogation of IRE1α in bone marrow cells increases bone mass as the result of defective osteoclastic bone resorption. In osteoclast precursors, IRE1α was transiently activated during osteoclastogenesis, and suppression of the IRE1α/XBP1 pathway in these cells substantially inhibited the formation of multinucleated osteoclasts in vitro. We determined that XBP1 directly binds the promoter and induces transcription of the gene encoding the master regulator of osteoclastogenesis nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, activation of IRE1α was partially dependent on Ca2+ oscillation mediated by inositol 1,4,5-trisphosphate receptors 2 and 3 (ITPR2 and ITPR3) in the endoplasmic reticulum, as pharmacological inhibition or deletion of these receptors markedly decreased Xbp1 mRNA processing. The present study thus reveals an intracellular pathway that integrates the UPR and osteoclast differentiation through activation of the IRE1α/XBP1 pathway.

Authors

Takahide Tohmonda, Masaki Yoda, Takao Iwawaki, Morio Matsumoto, Masaya Nakamura, Katsuhiko Mikoshiba, Yoshiaki Toyama, Keisuke Horiuchi

×

Figure 4

Lack of IRE1α activity does not affect cell survival of BMMs or population of osteoclast precursors.

Options: View larger image (or click on image) Download as PowerPoint
Lack of IRE1α activity does not affect cell survival of BMMs or populati...
(A and B) Flow cytometric analysis of the monocyte/macrophage (A) and osteoclast precursor (B) populations. Representative flow cytometry plots for each experiment are shown (left panels). Frequency in total BM cells (A) or in CD117+-gated BM cells (B) and absolute number of these cells (in bilateral femurs and tibiae) are presented (right panels). n = 4 for WT and n = 8 for Ern1Mx1 mice. Values represent mean ± SD. *P < 0.05. (C) Cell survival rate of WT and Ern1Mx1 BMMs incubated with sRANKL for 1 to 4 days was evaluated using an MTT-based assay. n = 3 replicates. (D) Caspase-3/7 activity in the WT and Ern1Mx1 BMMs treated with sRANKL was evaluated. n = 3 replicates. Values represent mean ± SD. Statistical analysis was performed using Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts